Codeforces 616E - Sum of Remainders
616E Sum of Remainders
Calculate the value of the sum: n mod 1 + n mod 2 + n mod 3 + … + n mod m. As the result can be very large, you should print the value modulo 109 + 7 (the remainder when divided by 109 + 7).
The modulo operator a mod b stands for the remainder after dividing a by b. For example 10 mod 3 = 1.
Input
The only line contains two integers n, m (1 ≤ n, m ≤ 1013) — the parameters of the sum.
Output
Print integer s — the value of the required sum modulo 109 + 7.
Sample test(s)
Input
3 4
Output
4
Input
4 4
Output
1
Input
1 1
Output
0
思路:
1.对mod的理解与转化: n%mod = n - n/mod*mod;
现在答案就变成了 n*m - Σ(1->m)(n/i*i),乍一看认为没什么优化,还是要求后面的从1 到m的Σ(n/i*i);这就是优化。现在就需要用到对整除的理解的~~ 对于n/x = n/i;这样的x的区间边界时什么? 经分析知:[i,n/(n/i)];却这里得到一个很有趣的结论,对于n/(n/(n/i)) = n/i;2.然后就是mod运算了,注意在同一个n/i下的区间内数的和(l+r)/2时,为了不爆范围,先用偶数除以二,之后在相乘;
3.举个例子对下面程序的运行:
比如n = 15,m = 13;
则[1,1] ==>是第一个计算的,对于任意的x ,l <= x <= r,n/x = n/i;
[2,2],[3,3],[4,5],[6,7],[8,13];//区间距离越来越大;这里是优化的对象;
之后 l = r,再++l;就是对于每一个n/i相等的区间,直接利用等差数列求完,下次求解的时候,l = r+1;即区间不会覆盖;所以对于1e13范围内的数据,还是可以在436ms内求解完毕;如上面最后一次是8~13
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod = 1e9+7;
int add(ll a, ll b) { return (a+b)%mod; }
int sub(ll a, ll b) { return ((a-b)%mod + mod)%mod; }
int mult(ll a, ll b) { return ((a%mod) * (b%mod))%mod; }
int main()
{
ll i,n,m;
cin>>n>>m;
int ans = mult(n,m),sum = 0;
m = min(n,m);
for(i = 1;i <= m;i++){// l = i,r = n/(n/i);while:l <= x <= r ;n/x = n/i;
ll r = n/(n/i);
r = min(r,m);
ll sm = i + r,nm = r - i + 1;
if(sm&1) sm = mult(sm,nm/2);
else sm = mult(sm/2,nm);
sum = add(sum,mult(sm,n/i));
i = r;
}
ans = sub(ans,sum);
cout<<ans;
}