后端基础——天线效应
“在芯片生产过程中,暴露的金属线或者多晶硅(polysilicon)等导体,就象是一根根天线,会收集电荷(如等离子刻蚀产生的带电粒子)导致电位升高。天线越长,收集的电荷也就越多,电压就越高。若这片导体碰巧只接了MOS的栅,那么高电压就可能把薄栅氧化层击穿,使电路失效,这种现象我们称之为“天线效应”。随着工艺技术的发展,栅的尺寸越来越小,金属的层数越来越多,发生天线效应的可能性就越大。”
一,为何在制造中会收集电荷?
现代工艺采用了一种叫离子刻蚀的方法,在制造每一层metal layer的时候,会先在这个layer上铺满金属,而后通过离子刻蚀去掉不要的部分,留下来的就是我们画的net走线了。然而离子刻蚀的时候空间中会出现大量的电荷,这些电荷就会附着在金属表面,电荷量的多少与金属面积正相关。现在金属的厚度一般都要大于金属的宽度,相应的金属线侧边会聚集更多电荷。这些net就如同天线一样吸收着空间中的电荷,如果这根net连接到MOS管的栅极,如果电荷过多就有可能击穿栅氧化层,造成MOS管损坏。
为了量化天线效应的影响,我们引入了天线效应比率的概念,它又分成局部天线效应比率和累积天线效应比率。局部天线效应比率指的是某一层金属的面积比上与他相连的栅的面积,这个比率越大,造成击穿的可能性就越高。累积天线效应比率指的是所有产生天线效应金属层的局部天线效应比率之和。一般我们的antenna rule就会根据这两个比率来定,后端在绕线的时候要注意天线效应比率不能超过rule定的spec。
二,如何避免?
(1)天线比率(AR)是现在计算是否产生天线效应的标注:AR=导体面积/栅的面积。天线效应的产生几率跟天线比率成正比,也就是说AR的值越小就越不容易产生天线效应,版图能做的就是减小导体的面积。尽量少用poly连线,和跳线可以有效的达到这个目的。
(2)给天线加上一个反偏二极管,将电荷泄放。