多模字符串匹配算法-Aho–Corasick
背景
在做实际工作中,最简单也最常用的一种自然语言处理方法就是关键词匹配,例如我们要对n条文本进行过滤,那本身是一个过滤词表的,通常进行过滤的代码如下
for (String document : documents) {
for (String filterWord : filterWords) {
if (document.contains(filterWord)) {
//process ...
}
}
}
如果文本的数量是n,过滤词的数量是k,那么复杂度为O(nk);如果关键词的数量较多,那么支行效率是非常低的。
计算机科学中,Aho–Corasick算法是由Alfred V. Aho和Margaret J.Corasick 发明的字符串搜索算法,用于在输入的一串字符串中匹配有限组“字典”中的子串。它与普通字符串匹配的不同点在于同时与所有字典串进行匹配。算法均摊情况下具有近似于线性的时间复杂度,约为字符串的长度加所有匹配的数量。然而由于需要找到所有匹配数,如果每个子串互相匹配(如字典为a,aa,aaa,aaaa,输入的字符串为aaaa),算法的时间复杂度会近似于匹配的二次函数。
原理
在一般的情况下,针对一个文本进行关键词匹配,在匹配的过程中要与每个关键词一一进行计算。也就是说,每与一个关键词进行匹配,都要重新从文档的开始到结束进行扫描。AC自动机的思想是,在开始时先通过词表,对以下三种情况进行缓存:
- 按照字符转移成功进行跳转(success表)
- 按照字符转移失败进行跳转(fail表)
- 匹配成功输出表(output表)
因此在匹配的过程中,无需从新从文档的开始进行匹配,而是通过缓存直接进行跳转,从而实现近似于线性的时间复杂度。
构建
构建的过程分三个步骤,分别对success表,fail表,output表进行构建。其中output表在构建sucess和fail表进行都进行了补充。fail表是一对一的,output表是一对多的。
按照字符转移成功进行跳转(success表)
sucess表实际就是一棵trie树,构建的方式和trie树是一样的,这里就不赘述。
按照字符转移失败进行跳转(fail表)
设这个节点上的字母为C,沿着他父亲的失败指针走,直到走到一个节点,他的儿子中也有字母为C的节点。然后把当前节点的失败指针指向那个字母也为C的儿子。如果一直走到了root都没找到,那就把失败指针指向root。 使用广度优先搜索BFS,层次遍历节点来处理,每一个节点的失败路径。
匹配成功输出表(output表)
匹配
举例说明,按顺序先后添加关键词he,she,,his,hers。在匹配ushers过程中。先构建三个表,如下图,实线是sucess表,虚线是fail表,结点后的单词是ourput表。
代码
import java.util.*;
/**
*/
public class ACTrie {
private boolean failureStatesConstructed = false; //是否建立了failure表
private Node root; //根结点
public ACTrie() {
this.root = new Node(true);
}
/**
* 添加一个模式串
* @param keyword
*/
public void addKeyword(String keyword) {
if (keyword == null || keyword.length() == 0) {
return;
}
Node currentState = this.root;
for (Character character : keyword.toCharArray()) {
currentState = currentState.insert(character);
}
currentState.addEmit(keyword);
}
/**
* 模式匹配
*
* @param text 待匹配的文本
* @return 匹配到的模式串
*/
public Collection<Emit> parseText(String text) {
checkForConstructedFailureStates();
Node currentState = this.root;
List<Emit> collectedEmits = new ArrayList<>();
for (int position = 0; position < text.length(); position++) {
Character character = text.charAt(position);
currentState = currentState.nextState(character);
Collection<String> emits = currentState.emit();
if (emits == null || emits.isEmpty()) {
continue;
}
for (String emit : emits) {
collectedEmits.add(new Emit(position - emit.length() + 1, position, emit));
}
}
return collectedEmits;
}
/**
* 检查是否建立了failure表
*/
private void checkForConstructedFailureStates() {
if (!this.failureStatesConstructed) {
constructFailureStates();
}
}
/**
* 建立failure表
*/
private void constructFailureStates() {
Queue<Node> queue = new LinkedList<>();
// 第一步,将深度为1的节点的failure设为根节点
//特殊处理:第二层要特殊处理,将这层中的节点的失败路径直接指向父节点(也就是根节点)。
for (Node depthOneState : this.root.children()) {
depthOneState.setFailure(this.root);
queue.add(depthOneState);
}
this.failureStatesConstructed = true;
// 第二步,为深度 > 1 的节点建立failure表,这是一个bfs 广度优先遍历
/**
* 构造失败指针的过程概括起来就一句话:设这个节点上的字母为C,沿着他父亲的失败指针走,直到走到一个节点,他的儿子中也有字母为C的节点。
* 然后把当前节点的失败指针指向那个字母也为C的儿子。如果一直走到了root都没找到,那就把失败指针指向root。
* 使用广度优先搜索BFS,层次遍历节点来处理,每一个节点的失败路径。
*/
while (!queue.isEmpty()) {
Node parentNode = queue.poll();
for (Character transition : parentNode.getTransitions()) {
Node childNode = parentNode.find(transition);
queue.add(childNode);
Node failNode = parentNode.getFailure().nextState(transition);
childNode.setFailure(failNode);
childNode.addEmit(failNode.emit());
}
}
}
private static class Node{
private Map<Character, Node> map;
private List<String> emits; //输出
private Node failure; //失败中转
private boolean isRoot = false;//是否为根结点
public Node(){
map = new HashMap<>();
emits = new ArrayList<>();
}
public Node(boolean isRoot) {
this();
this.isRoot = isRoot;
}
public Node insert(Character character) {
Node node = this.map.get(character);
if (node == null) {
node = new Node();
map.put(character, node);
}
return node;
}
public void addEmit(String keyword) {
emits.add(keyword);
}
public void addEmit(Collection<String> keywords) {
emits.addAll(keywords);
}
/**
* success跳转
* @param character
* @return
*/
public Node find(Character character) {
return map.get(character);
}
/**
* 跳转到下一个状态
* @param transition 接受字符
* @return 跳转结果
*/
private Node nextState(Character transition) {
Node state = this.find(transition); // 先按success跳转
if (state != null) {
return state;
}
//如果跳转到根结点还是失败,则返回根结点
if (this.isRoot) {
return this;
}
// 跳转失败的话,按failure跳转
return this.failure.nextState(transition);
}
public Collection<Node> children() {
return this.map.values();
}
public void setFailure(Node node) {
failure = node;
}
public Node getFailure() {
return failure;
}
public Set<Character> getTransitions() {
return map.keySet();
}
public Collection<String> emit() {
return this.emits == null ? Collections.<String>emptyList() : this.emits;
}
}
private static class Emit{
private final String keyword;//匹配到的模式串
private final int start;
private final int end;
/**
* 构造一个模式串匹配结果
* @param start 起点
* @param end 重点
* @param keyword 模式串
*/
public Emit(final int start, final int end, final String keyword) {
this.start = start;
this.end = end;
this.keyword = keyword;
}
/**
* 获取对应的模式串
* @return 模式串
*/
public String getKeyword() {
return this.keyword;
}
@Override
public String toString() {
return super.toString() + "=" + this.keyword;
}
}
public static void main(String[] args) {
ACTrie trie = new ACTrie();
trie.addKeyword("hers");
trie.addKeyword("his");
trie.addKeyword("she");
trie.addKeyword("he");
Collection<Emit> emits = trie.parseText("ushers");
for (Emit emit : emits) {
System.out.println(emit.start + " " + emit.end + "\t" + emit.getKeyword());
}
}
}