暴力果断超时 下面给出一个大神的证明:
http://www.cnblogs.com/devymex/archive/2010/08/07/1799713.html
这是一道数论题,用数学的语言描述就是:x, y, z∈N,给定一个数n,找出所有的x, y, z ≤ n,使得x2 + y2 = z2成立。如果要穷举所有的x, y, z的话,按照题目所给的数据量,肯定是无法在限定时间内完成的。考虑利用毕达哥拉斯数的性质生成所有的x, y, z来解决,数学推导简要介绍如下:
先假定x, y, z两两互质,由于x, y互质,故x, y中至少有1个是奇数。下面用反证法证明x和y中有且只有1个奇数。假定x, y都为奇数,设:
- x = 2a + 1
- y = 2b + 1
- x2 + y2 = (2a + 1)2 + (2b + 1)2
= 4(a2 + b2 + a + b) + 2
又因为x2和y2是奇数,则z2是偶数,且必能被4整除,与上式矛盾,因此x, y中只有一个奇数。
假设x为奇数,y为偶数,则z为奇数,2z与2x的最大公因数为2,2z和2x可分别写作
- 2z = (z + x) + (z - x)
- 2x = (z + x) - (z - x)
那么跟据最大公因数性质,z + x和z - x的最大公因数也为2,又因为:
- (z + x)(z - x) = y2,两边同除以4得:
((z + x) / 2)((z - x) / 2) = (y / 2)2
故可令:
- z + x = 2m2, z - x = 2n2
其中z = m + n, x = m - n(m与n互质)
则有:
- y2 = z2 - x2 = 2m22n2 = 4m2n2
即y = 2mn。
综上所述,可得到下式:
- x = m2 - n2, y = 2mn, z = m2 + n2. (m, n为任意自然数)
这里还有一个问题:题目要求统计(x, y, z)三元组的数量时只统计x,y和z两两互质的的情况,这个问题用上面的算法就可以解决了。但对于统计p的数量,题目并不限定三元组是两两互质的。但是上式不能生成所有x, y, z并不是两两互质的情况。然而假设x与y最大公因数w不为1,则z也必能被w整除,因此w为x, y, z三个数的公因数。归纳总结可知,所有非两两互质的x0, y0, z0都可由一组互质的x, y, z乘以系数得到。根据以上理论就可以快速的求解了。
#include <algorithm> #include <cstring> #include <cstdio> #include <cmath> using std::min; using std::max; int gcd(int a, int b) { return b==0?a:gcd(b,a%b); } int ans[1000010]; int main() { int n,m; while(scanf("%d",&n)==1) { int sum=0; memset(ans, 0, sizeof(ans)); for(int i=1; i<=sqrt(n); ++i) { for(int j=i+1; j<=sqrt(n); ++j) { int x=j*j-i*i; int y=2*i*j; int z=i*i+j*j; if(x<=n && y<=n && z<=n&& gcd(x,y)==1 && gcd(x,z)==1 && gcd(z,y)==1 && gcd(i,j)==1) { sum++; for(int k=1; z*k<=n; ++k) ans[k*x]=ans[k*y]=ans[k*z]=1; } } } int num=0; for(int i=1; i<=n; ++i) if(!ans[i]) num++; printf("%d %d\n",sum,num); } return 0; }