BITMAP图片压缩算法三则--bilinear、nearest、cubic
原文:http://blog.chinaunix.net/uid-253932-id-3037805.html
工作需要,要弄截图且缩小。截图倒是好说,WIN API可以搞定,但是缩小且尽量不失真,这个对我来说难度太大了吧。这里主要说说缩小的算法。我从网上找到两个算法分别是bilinear和nearest。但是效果看上去太差了。我先贴上处理后的三种算法效果图,然后再贴算法。
bilinear
nearest
cubic
当然大家可以看的出来,效果最好的自然是Cubic,提供一些该算法的资料,不过我自己是没看懂http://en.wikipedia.org/wiki/Cubic_function。cubic是我们公司多媒体方面的牛人帮我写的。
#include "stdafx.h" #include <stdio.h> #include <string> #include <windows.h> #include <math.h> using namespace std; enum StretchMode { nearest, //最临近插值算法 bilinear, //双线性内插值算法 cubic }; const int CUBIC_SIZE = 3; int getSincVec(float *pfVec, float fPos, float fScale) { int nPos = (int)fPos; fPos -= (float)nPos; memset(pfVec, 0, sizeof(float) * CUBIC_SIZE); float fSum = 0.f; for (int i=0; i<CUBIC_SIZE; i++) { float fTmp = (i - 1.f + fPos) * 3.14159265358979323846f; if (fTmp > 0.00001 || fTmp < -0.00001) { pfVec[i] = sinf(fTmp * fScale) / fTmp; } else { pfVec[i] = 1.f; } fSum += pfVec[i]; } fSum = 1.f / fSum; for (int i=0; i<CUBIC_SIZE; i++) { pfVec[i] *= fSum; } return nPos; } void calcSincMat(float *pfMat, float *pfVecY, float *pfVecX) { for (int i=0; i<CUBIC_SIZE; i++) { for (int j=0; j<CUBIC_SIZE; j++) { pfMat[i * CUBIC_SIZE + j] = pfVecY[i] * pfVecX[j]; } } } void Stretch(const string& srcFile,const string& desFile,int desW,int desH,StretchMode mode) { BITMAPFILEHEADER bmfHeader; BITMAPINFOHEADER bmiHeader; FILE *pFile; if ((pFile = fopen(srcFile.c_str(),"rb")) == NULL) { printf("open bmp file error."); exit(-1); } //读取文件和Bitmap头信息 fseek(pFile,0,SEEK_SET); fread(&bmfHeader,sizeof(BITMAPFILEHEADER),1,pFile); fread(&bmiHeader,sizeof(BITMAPINFOHEADER),1,pFile); //先不支持小于16位的位图 int bitCount = bmiHeader.biBitCount; if (bitCount < 16) { exit(-1); } int srcW = bmiHeader.biWidth; int srcH = bmiHeader.biHeight; int lineSize = bitCount * srcW / 8; //偏移量,windows系统要求每个扫描行按四字节对齐 int alignBytes = ((bmiHeader.biWidth * bitCount + 31) & ~31) / 8L - bmiHeader.biWidth * bitCount / 8L; //原图像缓存 int srcBufSize = lineSize * srcH; BYTE* srcBuf = new BYTE[srcBufSize]; int i,j; //读取文件中数据 for (i = 0; i < srcH; i++) { fread(&srcBuf[lineSize * i],lineSize,1,pFile); fseek(pFile,alignBytes,SEEK_CUR); } //目标图像缓存 int desBufSize = ((desW * bitCount + 31) / 32) * 4 * desH; int desLineSize = ((desW * bitCount + 31) / 32) * 4; BYTE *desBuf = new BYTE[desBufSize]; double rateH = (double)srcH / desH; double rateW = (double)srcW / desW; //最临近插值算法 if (mode == nearest) { for (i = 0; i < desH; i++) { //选取最邻近的点 int tSrcH = (int)(rateH * i + 0.5); for (j = 0; j < desW; j++) { int tSrcW = (int)(rateW * j + 0.5); memcpy(&desBuf[i * desLineSize] + j * bmiHeader.biBitCount / 8,&srcBuf[tSrcH * lineSize] + tSrcW * bmiHeader.biBitCount / 8,bmiHeader.biBitCount / 8); } } } //双线型内插值算法 else if (mode == bilinear) { for (i = 0; i < desH; i++) { int tH = (int)(rateH * i); int tH1 = min(tH + 1,srcH - 1); float u = (float)(rateH * i - tH); for (j = 0; j < desW; j++) { int tW = (int)(rateW * j); int tW1 = min(tW + 1,srcW - 1); float v = (float)(rateW * j - tW); //f(i+u,j+v) = (1-u)(1-v)f(i,j) + (1-u)vf(i,j+1) + u(1-v)f(i+1,j) + uvf(i+1,j+1) for (int k = 0; k < 3; k++) { desBuf[i * desLineSize + j * bitCount / 8 + k] = (1 - u)*(1 - v) * srcBuf[tH * lineSize + tW * bitCount / 8 + k] + (1 - u)*v*srcBuf[tH1 * lineSize + tW * bitCount / 8+ k] + u * (1 - v) * srcBuf[tH * lineSize + tW1 * bitCount / 8 + k] + u * v * srcBuf[tH1 * lineSize + tW1 * bitCount / 8 + k]; } } } } else { float pfVecX[CUBIC_SIZE], pfVecY[CUBIC_SIZE], pfMat[CUBIC_SIZE][CUBIC_SIZE]; int nPixelBytes = bitCount / 8; for (i=1; i<desH-1; i++) { int nSrcY = getSincVec(pfVecY, rateH * i, 1.f / rateH); for (j = 1; j < desW-1; j++) { int nSrcX = getSincVec(pfVecX, rateW * j, 1.f / rateW); calcSincMat(pfMat[0], pfVecY, pfVecX); BYTE *pbyTmpDes = desBuf + i * desLineSize + j * nPixelBytes; BYTE *pbyTmpSrc = srcBuf + nSrcY * lineSize + nSrcX * nPixelBytes; for (int k = 0; k < 3; k++) { float fTmp = pbyTmpSrc[0] * pfMat[1][1]; fTmp += pbyTmpSrc[-lineSize] * pfMat[0][1]; fTmp += pbyTmpSrc[lineSize] * pfMat[2][1]; fTmp += pbyTmpSrc[-nPixelBytes] * pfMat[1][0]; fTmp += pbyTmpSrc[-nPixelBytes-lineSize] * pfMat[0][0]; fTmp += pbyTmpSrc[-nPixelBytes+lineSize] * pfMat[2][0]; fTmp += pbyTmpSrc[nPixelBytes] * pfMat[1][2]; fTmp += pbyTmpSrc[nPixelBytes-lineSize] * pfMat[0][2]; fTmp += pbyTmpSrc[nPixelBytes+lineSize] * pfMat[2][2]; if (fTmp < 0.f) fTmp = 0.f; if (fTmp > 255.f) fTmp = 255.f; *pbyTmpDes++ = (BYTE)fTmp; pbyTmpSrc++; } } } } //创建目标文件 HFILE hfile = _lcreat(desFile.c_str(),0); //文件头信息 BITMAPFILEHEADER nbmfHeader; nbmfHeader.bfType = 0x4D42; nbmfHeader.bfSize = sizeof(BITMAPFILEHEADER) + sizeof(BITMAPINFOHEADER) + desW * desH * bitCount / 8; nbmfHeader.bfReserved1 = 0; nbmfHeader.bfReserved2 = 0; nbmfHeader.bfOffBits = sizeof(BITMAPFILEHEADER) + sizeof(BITMAPINFOHEADER); //Bitmap头信息 BITMAPINFOHEADER bmi; bmi.biSize=sizeof(BITMAPINFOHEADER); bmi.biWidth=desW; bmi.biHeight=desH; bmi.biPlanes=1; bmi.biBitCount=bitCount; bmi.biCompression=BI_RGB; bmi.biSizeImage=0; bmi.biXPelsPerMeter=0; bmi.biYPelsPerMeter=0; bmi.biClrUsed=0; bmi.biClrImportant=0; //写入文件头信息 _lwrite(hfile,(LPCSTR)&nbmfHeader,sizeof(BITMAPFILEHEADER)); //写入Bitmap头信息 _lwrite(hfile,(LPCSTR)&bmi,sizeof(BITMAPINFOHEADER)); //写入图像数据 _lwrite(hfile,(LPCSTR)desBuf,desBufSize); _lclose(hfile); } int main(int argc, char* argv[]) { FILE *pFile; if ((pFile = fopen("e://t.bmp","rb")) == NULL) { printf("open bmp file error."); return -1; } string srcFile("e://t.bmp"); string desFileN("e://nearest.bmp"); string desFileB("e://bilinear.bmp");; string desFileC("e://cubic.bmp"); //Stretch(srcFile,desFileN,235,136,nearest); //Stretch(srcFile,desFileB,235,136,bilinear); Stretch(srcFile,desFileC,235,136,cubic); //int alignBytes = ~31; //printf("alignbytes : %d",alignBytes); return 0; }