Python实现客观赋权法
本文从阐述Python实现客观赋权法的四种方式:
一. 熵权法
二. 因子分析权数法(FAM)
三. 主成分分析权数法(PCA)
四. 独立性权系数法
Python实现客观赋权法,在进行赋权前,先导入数据(列:各维属性;行:各样本),并自行进行去空值、归一化等操作。
import pandas as pd import numpy as np data=pd.DataFrame(pd.read_excel('路径'))
一. 熵权法
若某个指标的信息熵越大(即离散程度越大),表明指标提供的信息量越多,在综合评价中所能起到的作用也越大,权重也就越大。
m,n=data.shape data=data.as_matrix(columns=None) pij=data/data.sum(axis=0) test=pij*np.log(pij) test=np.nan_to_num(test) ej=-1/np.log(m)*(test.sum(axis=0)) wi=(1-ej)/np.sum(1-ej) print(wi)
二. 因子分析权数法(FAM)
因子分析的目的:用少数几个因子去描述许多指标和因素间的联系,因子不具备直接物理含义。
因子分析权数法:对每个指标,计算共性因子的累计贡献率来定权。
from math import * import numpy.linalg as nlg data_mean=data.mean()#样本均值 E = np.mat(np.zeros((12, 12)))#样本离差阵,12是因为我输入的是12维属性 for i in range(len(data)): E += (data.iloc[i, :].values.reshape(12, 1) - data_mean.values.reshape(12, 1)) * (data.iloc[i, :].values.reshape(1, 12) - data_mean.values.reshape(1, 12)) R = np.mat(np.zeros((12, 12)))#样本相关阵R for i in range(12): for j in range(12): R[i, j] = E[i, j]/sqrt(E[i, i] * E[j, j]) eig_value, eigvector = nlg.eig(R)#求矩阵R的全部特征值,构成向量E。 eig = pd.DataFrame() eig['names'] = data.columns eig['eig_value'] = eig_value eig.sort_values('eig_value', ascending=False, inplace=True) createVar = locals() result=0 #求因子模型的因子载荷阵,寻找公共因子个数m for m in range(1, 12): createVar['factor_'+str(m)]=eig['eig_value'][:m].sum()/eig['eig_value'].sum()-result#这步计算每个因子的贡献率 result=eig['eig_value'][:m].sum()/eig['eig_value'].sum() if eig['eig_value'][:m].sum()/eig['eig_value'].sum() >= 0.8:#认为贡献率之和>80%的前m个重要因子,可以描述指标 print(m)#这里我得到的是7,所以之后算因子载荷矩阵有七列 break eig_value=eig_value.reshape(12, 1) #因子载荷矩阵 A = np.mat(np.zeros((12, 7))) A[:,0]=factor_1*abs((sqrt(eig_value[0])*eigvector[:,0]).reshape(12, 1)) A[:,1]=factor_2*abs((sqrt(eig_value[1])*eigvector[:,1]).reshape(12, 1)) A[:,2]=factor_3*abs((sqrt(eig_value[2])*eigvector[:,2]).reshape(12, 1)) A[:,3]=factor_4*abs((sqrt(eig_value[3])*eigvector[:,3]).reshape(12, 1)) A[:,4]=factor_5*abs((sqrt(eig_value[4])*eigvector[:,4]).reshape(12, 1)) A[:,5]=factor_6*abs((sqrt(eig_value[5])*eigvector[:,5]).reshape(12, 1)) A[:,6]=factor_7*abs((sqrt(eig_value[6])*eigvector[:,6]).reshape(12, 1)) a=pd.DataFrame(A) b=a.sum(axis=1) c=b/b.sum(axis=0) print(c)
三. 主成分分析权数法(PCA)
与因子分析法的主要区别在于:主成分由原有特征线性加权得到,而因子分析法中,因子线性加权得到原有特征。
指标权重为主成分的方差贡献率。
from sklearn.decomposition import PCA X=np.array(data) pca=PCA(n_components=5) pca.fit(X) component=pca.components_ variance_ratio=pca.explained_variance_ratio_ component=abs(component.T) for i in range(0,5): component[:,i]=variance_ratio[i]*component[:,i] a=pd.DataFrame(component) b=a.sum(axis=1) c=b/b.sum(axis=0) print(c)
四. 独立性权系数法
若指标与其他指标的复相关系数越大,则与其他指标的共线性关系越强,重复信息越多,所以指标权重越小。也即独立性越强,指标权重越大。
复相关系数是其中一项和其他项的加权和的相关系数,所以这里需要用到多元线性回归,我是用excel做的回归(网上很容易查到步骤),得到了复相关系数R1—R12,之后:
createVar = locals() sum_result=0 for i in range(1,13): createVar['R'+str(i)]=1/createVar['R'+str(i)] sum_result=sum_result+createVar['R'+str(i)] for i in range(1,13): createVar['R'+str(i)]=createVar['R'+str(i)]/sum_result print(createVar['R'+str(i)])
参考文章:
https://blog.csdn.net/weixin_37805505/article/details/80847800