bzoj2839 集合计数
F.A.Qs | Home | Discuss | ProblemSet | Status | Ranklist | Contest | 入门OJ | ModifyUser | Logout | 捐赠本站 |
---|
2839: 集合计数
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 854 Solved: 470
Description
一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得
它们的交集的元素个数为K,求取法的方案数,答案模1000000007。(是质数喔~)
Input
一行两个整数N,K
Output
一行为答案。
Sample Input
3 2
Sample Output
6
HINT
【样例说明】
假设原集合为{A,B,C}
则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,ABC},{AB},{AC},{BC}
【数据说明】
对于100%的数据,1≤N≤1000000;0≤K≤N;
Source
答案就是交集至少为k - 至少为k+1......
我们先钦定k个元素,这是Cnk的。然后发现有2n-k个集合包含它,这些集合都可以选或不选,所以是22^(n-k)-1
然后我们发现还是有多算的,至少为j的元素多算了Cjk次,因为我们可以从这Cjk个方案中导出这一种。于是还要乘上这个系数。
那个2的连续阶乘,把上面的对phi(p)取模然后快速幂。
1 #include <cstdio> 2 3 const int MO = 1000000007, phi = 1000000006; 4 5 const int N = 1000010; 6 7 int f[N], pw[N], pww[N], fac[N], inv[N], invn[N]; 8 9 inline int C(int n, int m) { 10 if(n < m || n < 0 || m < 0) return 0; 11 return 1ll * fac[n] * invn[m] % MO * invn[n - m] % MO; 12 } 13 14 inline int qpow(int a, int b) { 15 int ans = 1; 16 while(b) { 17 if(b & 1) ans = 1ll * ans * a % MO; 18 a = 1ll * a * a % MO; 19 b = b >> 1; 20 } 21 return ans; 22 } 23 24 int main() { 25 26 int n, k; 27 scanf("%d%d", &n, &k); 28 pww[0] = pw[0] = fac[0] = inv[0] = invn[0] = 1; 29 fac[1] = inv[1] = invn[1] = 1; pw[1] = pww[1] = 2; 30 for(int i = 2; i <= n; i++) { 31 fac[i] = 1ll * fac[i - 1] * i % MO; 32 inv[i] = 1ll * inv[MO % i] * (MO - MO / i) % MO; 33 invn[i] = 1ll * invn[i - 1] * inv[i] % MO; 34 pw[i] = pw[i - 1] * 2 % MO; 35 pww[i] = pww[i - 1] * 2 % (phi); 36 } 37 38 int ans = 0; 39 for(int i = k; i <= n; i++) { 40 int temp = 1ll * (qpow(2, pww[n - i]) - 1) * C(n, i) % MO * C(i, k) % MO; 41 if((i - k) & 1) ans = (ans - temp) % MO; 42 else ans = (ans + temp) % MO; 43 } 44 printf("%d\n", (ans + MO) % MO); 45 return 0; 46 }
还可以用类似bzoj3622的方法,倒着逐步推出正确的结果。虽然会超时但是思想值得借鉴。
1 #include <cstdio> 2 3 const int MO = 1000000007, phi = 1000000006; 4 5 const int N = 1000010; 6 7 int f[N], pw[N], pww[N], fac[N], inv[N], invn[N]; 8 9 inline int C(int n, int m) { 10 if(n < m || n < 0 || m < 0) return 0; 11 return 1ll * fac[n] * invn[m] % MO * invn[n - m] % MO; 12 } 13 14 inline int qpow(int a, int b) { 15 int ans = 1; 16 while(b) { 17 if(b & 1) ans = 1ll * ans * a % MO; 18 a = 1ll * a * a % MO; 19 b = b >> 1; 20 } 21 return ans; 22 } 23 24 int main() { 25 26 27 28 int n, k; 29 scanf("%d%d", &n, &k); 30 pww[0] = pw[0] = fac[0] = inv[0] = invn[0] = 1; 31 fac[1] = inv[1] = invn[1] = 1; pw[1] = pww[1] = 2; 32 for(int i = 2; i <= n; i++) { 33 fac[i] = 1ll * fac[i - 1] * i % MO; 34 inv[i] = 1ll * inv[MO % i] * (MO - MO / i) % MO; 35 invn[i] = 1ll * invn[i - 1] * inv[i] % MO; 36 pw[i] = pw[i - 1] * 2 % MO; 37 pww[i] = pww[i - 1] * 2 % (phi); 38 } 39 40 int ans = 0; 41 42 /*for(int i = k; i <= n; i++) { 43 int temp = 1ll * (qpow(2, pww[n - i]) - 1) * C(n, i) % MO * C(i, k) % MO; 44 if((i - k) & 1) ans = (ans - temp) % MO; 45 else ans = (ans + temp) % MO; 46 }*/ 47 for(int i = n; i >= k; i--) { 48 f[i] = 1ll * (qpow(2, pww[n - i]) - 1) * C(n, i) % MO; 49 for(int j = i + 1; j <= n; j++) { 50 f[i] -= 1ll * f[j] * C(j, i) % MO; 51 if(f[i] < 0) f[i] += MO; 52 } 53 } 54 55 printf("%d\n", (f[k] + MO) % MO); 56 return 0; 57 }