分块⑨题

冲着这个智慧的数字"⑨"就值得一写。

T1,区间加,单点查。

打个标记就行了。

 1 #include <cstdio>
 2 #include <cmath>
 3 
 4 const int N = 50010;
 5 
 6 int le[N], re[N], sum[N], tag[N], a[N], fr[N];
 7 
 8 inline void add(int x, int y, int c) {
 9     int l = fr[x], r = fr[y];
10     if(l == r) {
11         for(int i = x; i <= y; i++) {
12             a[i] += c;
13             sum[r] += c;
14         }
15         return;
16     }
17     for(int i = l + 1; i < r; i++) {
18         sum[i] += c * (re[i] - le[i] + 1);
19         tag[i] += c;
20     }
21     for(int i = x; i <= re[l]; i++) {
22         a[i] += c;
23         sum[l] += c;
24     }
25     for(int i = le[r]; i <= y; i++) {
26         a[i] += c;
27         sum[r] += c;
28     }
29     return;
30 }
31 
32 inline int ask(int x) {
33     return a[x] + tag[fr[x]];
34 }
35 
36 int main() {
37     int n;
38     scanf("%d", &n);
39     for(int i = 1; i <= n; i++) {
40         scanf("%d", &a[i]);
41     }
42     int T = sqrt(n);
43     for(int i = 1; i <= T; i++) {
44         le[i] = T * (i - 1) + 1;
45         re[i] = T * i;
46         for(int j = le[i]; j <= re[i]; j++) {
47             fr[j] = i;
48             sum[i] += a[j];
49         }
50     }
51     if(re[T] < n) {
52         T++;
53         le[T] = re[T - 1] + 1;
54         re[T] = n;
55         for(int i = le[T]; i <= n; i++) {
56             sum[T] += a[i];
57             fr[i] = T;
58         }
59     }
60 
61     for(int i = 1, f, x, y, z; i <= n; i++) {
62         scanf("%d%d%d%d", &f, &x, &y, &z);
63         if(f == 0) {
64             add(x, y, z);
65         }
66         else {
67             int t = ask(y);
68             printf("%d\n", t);
69         }
70     }
71 
72     return 0;
73 }
AC代码

T2,区间加,询问区间比x大的数的个数。

yy了一个n1.5logn的做法,然后发现复杂度可过......

有一个SB错误害我调了半天:931每块大小是30,这样就会有32块,最后要加上两块,而我只加了一块。

好像有高端写法可以避免...下一题试一下。

  1 #include <cstdio>
  2 #include <cmath>
  3 #include <algorithm>
  4 
  5 typedef long long LL;
  6 const int N = 50010;
  7 
  8 LL a[N], tag[N], p[2000][2000];
  9 int fr[N], le[N], re[N];
 10 
 11 inline void add(int x, int y, LL c) {
 12     int l = fr[x], r = fr[y];
 13     if(l == r) {
 14         for(int i = x; i <= y; i++) {
 15             a[i] += c;
 16         }
 17         p[r][0] = 0;
 18         for(int i = le[r]; i <= re[r]; i++) {
 19             p[r][++p[r][0]] = a[i];
 20         }
 21         std::sort(p[r] + 1, p[r] + p[r][0] + 1);
 22         return;
 23     }
 24     for(int i = l + 1; i < r; i++) {
 25         tag[i] += c;
 26     }
 27     for(int i = x; i <= re[l]; i++) {
 28         a[i] += c;
 29     }
 30     p[l][0] = 0;
 31     for(int i = le[l]; i <= re[l]; i++) {
 32         p[l][++p[l][0]] = a[i];
 33     }
 34     std::sort(p[l] + 1, p[l] + p[l][0] + 1);
 35     for(int i = le[r]; i <= y; i++) {
 36         a[i] += c;
 37     }
 38     p[r][0] = 0;
 39     for(int i = le[r]; i <= re[r]; i++) {
 40         p[r][++p[r][0]] = a[i];
 41     }
 42     std::sort(p[r] + 1, p[r] + p[r][0] + 1);
 43     return;
 44 }
 45 
 46 inline int ask(int x, int y, LL c) {
 47     int l = fr[x], r = fr[y], ans = 0;
 48     if(l == r) {
 49         for(int i = x; i <= y; i++) {
 50             ans += (a[i] + tag[r] < c);
 51         }
 52         return ans;
 53     }
 54     for(int i = l + 1; i < r; i++) {
 55         int t = std::lower_bound(p[i] + 1, p[i] + p[i][0] + 1, c - tag[i]) - p[i];
 56         ans += t - 1;
 57     }
 58     for(int i = x; i <= re[l]; i++) {
 59         ans += (a[i] + tag[l] < c);
 60     }
 61     for(int i = le[r]; i <= y; i++) {
 62         ans += (a[i] + tag[r] < c);
 63     }
 64     return ans;
 65 }
 66 
 67 int main() {
 68 
 69     int n;
 70     scanf("%d", &n);
 71     int T = sqrt(n);
 72     for(int i = 1; i <= n; i++) {
 73         scanf("%lld", &a[i]);
 74         fr[i] = (i - 1) / T + 1;
 75         p[fr[i]][++p[fr[i]][0]] = a[i];
 76     }
 77     for(int i = 1; i <= T; i++) {
 78         le[i] = (i - 1) * T + 1;
 79         re[i] = i * T;
 80         std::sort(p[i] + 1, p[i] + p[i][0] + 1);
 81     }
 82     while(re[T] < n) {
 83         T++;
 84         re[T] = std::min(n, T * re[1]);
 85         le[T] = re[T - 1] + 1;
 86         std::sort(p[T] + 1, p[T] + p[T][0] + 1);
 87     }
 88 
 89     LL z;
 90     for(int i = 1, f, x, y; i <= n; i++) {
 91         scanf("%d%d%d%lld", &f, &x, &y, &z);
 92         if(f == 0) {
 93             add(x, y, z);
 94         }
 95         else {
 96             int t = ask(x, y, z * z);
 97             printf("%d\n", t);
 98         }
 99     }
100 
101     return 0;
102 }
AC代码

 T3,区间加,询问区间前驱。

其实跟T2差别不大...数据范围开到100000了。感觉过不去,加了点剪枝,最后还是过了...

剪枝就是记录区间max,min。如果max < c 或 min > c就可以直接判断。

  1 #include <cstdio>
  2 #include <cmath>
  3 #include <algorithm>
  4 #include <climits>
  5 
  6 const int N = 100010, INF = LONG_MAX;
  7 
  8 inline void read(int &x) {
  9     x = 0;
 10     char c = getchar();
 11     bool f = 0;
 12     while(c < '0' || c > '9') {
 13         if(c == '-') {
 14             f = 1;
 15         }
 16         c = getchar();
 17     }
 18     while(c >= '0' && c <= '9') {
 19         x = (x << 3) + (x << 1) + c - 48;
 20         c = getchar();
 21     }
 22     if(f) {
 23         x = (~x) + 1;
 24     }
 25     return;
 26 }
 27 
 28 int a[N], tag[N], large[N], small[N], fr[N], le[N], re[N];
 29 int p[350][350];
 30 
 31 inline void update(int x) {
 32     large[x] = -INF - 1;
 33     small[x] = INF;
 34     p[x][0] = 0;
 35     for(int i = le[x]; i <= re[x]; i++) {
 36         p[x][++p[x][0]] = a[i];
 37         large[x] = std::max(large[x], a[i]);
 38         small[x] = std::min(small[x], a[i]);
 39     }
 40     std::sort(p[x] + 1, p[x] + p[x][0] + 1);
 41     return;
 42 }
 43 
 44 inline void add(int x, int y, int c) {
 45     int l = fr[x], r = fr[y];
 46     if(l == r) {
 47         for(int i = x; i <= y; i++) {
 48             a[i] += c;
 49         }
 50         update(r);
 51         return;
 52     }
 53     for(int i = l + 1; i < r; i++) {
 54         tag[i] += c;
 55     }
 56     for(int i = x; i <= re[l]; i++) {
 57         a[i] += c;
 58     }
 59     update(l);
 60     for(int i = le[r]; i <= y; i++) {
 61         a[i] += c;
 62     }
 63     update(r);
 64     return;
 65 }
 66 
 67 inline int ask(int x, int y, int c) {
 68     int ans = -1, l = fr[x], r = fr[y];
 69     if(l == r) {
 70         if(small[r] + tag[r] >= c) {
 71             return -1;
 72         }
 73         for(int i = x; i <= y; i++) {
 74             if(a[i] + tag[r] < c) {
 75                 ans = std::max(ans, a[i] + tag[r]);
 76             }
 77         }
 78         return ans;
 79     }
 80     for(int i = l + 1; i < r; i++) {
 81         if(large[i] + tag[i] < c) {
 82             ans = std::max(ans, large[i] + tag[i]);
 83             continue;
 84         }
 85         if(small[i] + tag[i] >= c) {
 86             continue;
 87         }
 88         int t = std::lower_bound(p[i] + 1, p[i] + p[i][0] + 1, c - tag[i]) - p[i];
 89         if(t > 1) {
 90             ans = std::max(ans, p[i][t - 1] + tag[i]);
 91         }
 92     }
 93     for(int i = x; i <= re[l] && small[l] + tag[l] < c; i++) {
 94         if(a[i] + tag[l] < c) {
 95             ans = std::max(ans, a[i] + tag[l]);
 96         }
 97     }
 98     for(int i = le[r]; i <= y && small[r] + tag[r] < c; i++) {
 99         if(a[i] + tag[r] < c) {
100             ans = std::max(ans, a[i] + tag[r]);
101         }
102     }
103     return ans;
104 }
105 
106 int main() {
107     int n;
108     read(n);
109     int T = sqrt(n);
110     for(int i = 1; i <= n; i++) {
111         read(a[i]);
112         fr[i] = (i - 1) / T + 1;
113     }
114     for(int i = 1; i <= fr[n]; i++) {
115         le[i] = (i - 1) * T + 1;
116         re[i] = i * T;
117         if(i == fr[n]) {
118             re[i] = n;
119         }
120         update(i);
121     }
122 
123     for(int i = 1, f, x, y, z; i <= n; i++) {
124         read(f);
125         read(x);
126         read(y);
127         read(z);
128         if(f == 0) {
129             add(x, y, z);
130         }
131         else {
132             int t = ask(x, y, z);
133             printf("%d\n", t);
134         }
135     }
136 
137     return 0;
138 }
AC代码

T4,区间加,区间求和。

打个标记就行了...

 1 #include <cstdio>
 2 #include <cmath>
 3 
 4 typedef long long LL;
 5 const int N = 100010;
 6 
 7 int le[N], re[N], fr[N];
 8 LL a[N], tag[N], sum[N];
 9 
10 inline void add(int x, int y, LL c) {
11     int l = fr[x], r = fr[y];
12     if(l == r) {
13         for(int i = x; i <= y; i++) {
14             a[i] += c;
15             sum[r] += c;
16         }
17         return;
18     }
19     for(int i = l + 1; i < r; i++) {
20         tag[i] += c;
21         sum[i] += c * (re[i] - le[i] + 1);
22     }
23     for(int i = x; i <= re[l]; i++) {
24         a[i] += c;
25         sum[l] += c;
26     }
27     for(int i = le[r]; i <= y; i++) {
28         a[i] += c;
29         sum[r] += c;
30     }
31     return;
32 }
33 
34 inline LL ask(int x, int y) {
35     int l = fr[x], r = fr[y];
36     LL ans = 0;
37     if(l == r) {
38         for(int i = x; i <= y; i++) {
39             ans += a[i] + tag[r];
40         }
41         return ans;
42     }
43     for(int i = l + 1; i < r; i++) {
44         ans += sum[i];
45     }
46     for(int i = x; i <= re[l]; i++) {
47         ans += a[i] + tag[l];
48     }
49     for(int i = le[r]; i <= y; i++) {
50         ans += a[i] + tag[r];
51     }
52     return ans;
53 }
54 
55 int main() {
56     int n;
57     scanf("%d", &n);
58     int T = sqrt(n);
59     for(int i = 1; i <= n; i++) {
60         scanf("%lld", &a[i]);
61         fr[i] = (i - 1) / T + 1;
62         sum[fr[i]] += a[i];
63     }
64     for(int i = 1; i <= fr[n]; i++) {
65         le[i] = re[i - 1] + 1;
66         re[i] = le[i] + T - 1;
67         if(i == fr[n]) {
68             re[i] = n;
69         }
70     }
71 
72     LL z;
73     for(int i = 1, x, y, f; i <= n; i++) {
74         scanf("%d%d%d%lld", &f, &x, &y, &z);
75         if(f == 0) {
76             add(x, y, z);
77         }
78         else {
79             LL t = ask(x, y) % (z + 1);
80             printf("%lld\n", t);
81         }
82     }
83 
84     return 0;
85 }
AC代码

 T5,区间开方下取整,区间求和。

线段树做法一样,维护最大值即可。

  1 #include <cstdio>
  2 #include <cmath>
  3 #include <algorithm>
  4 
  5 const int N = 50010;
  6 
  7 int fr[N], le[N], re[N], sum[N], large[N], a[N];
  8 
  9 inline void update(int x) {
 10     sum[x] = large[x] = 0;
 11     for(int i = le[x]; i <= re[x]; i++) {
 12         sum[x] += a[i];
 13         large[x] = std::max(large[x], a[i]);
 14     }
 15     return;
 16 }
 17 
 18 inline void change(int x, int y) {
 19     int l = fr[x], r = fr[y];
 20     if(l == r) {
 21         if(large[r] <= 1) {
 22             return;
 23         }
 24         for(int i = x; i <= y; i++) {
 25             if(a[i] > 1) {
 26                 a[i] = sqrt(a[i]);
 27             }
 28         }
 29         update(r);
 30         return;
 31     }
 32     for(int i = l + 1; i < r; i++) {
 33         if(large[i] <= 1) {
 34             continue;
 35         }
 36         for(int j = le[i]; j <= re[i]; j++) {
 37             if(a[j] > 1) {
 38                 a[j] = sqrt(a[j]);
 39             }
 40         }
 41         update(i);
 42     }
 43     if(large[l] > 1) {
 44         for(int i = x; i <= re[l]; i++) {
 45             if(a[i] > 1) {
 46                 a[i] = sqrt(a[i]);
 47             }
 48         }
 49         update(l);
 50     }
 51     if(large[r] > 1) {
 52         for(int i = le[r]; i <= y; i++) {
 53             if(a[i] > 1) {
 54                 a[i] = sqrt(a[i]);
 55             }
 56         }
 57         update(r);
 58     }
 59     return;
 60 }
 61 
 62 inline int ask(int x, int y) {
 63     int l = fr[x], r = fr[y], ans = 0;
 64     if(l == r) {
 65         for(int i = x; i <= y; i++) {
 66             ans += a[i];
 67         }
 68         return ans;
 69     }
 70     for(int i = l + 1; i < r; i++) {
 71         ans += sum[i];
 72     }
 73     for(int i = x; i <= re[l]; i++) {
 74         ans += a[i];
 75     }
 76     for(int i = le[r]; i <= y; i++) {
 77         ans += a[i];
 78     }
 79     return ans;
 80 }
 81 
 82 int main() {
 83     int n;
 84     scanf("%d", &n);
 85     int T = sqrt(n);
 86     for(int i = 1; i <= n; i++) {
 87         scanf("%d", &a[i]);
 88         fr[i] = (i - 1) / T + 1;
 89     }
 90     for(int i = 1; i <= fr[n]; i++) {
 91         le[i] = re[i - 1] + 1;
 92         re[i] = le[i] + T - 1;
 93         if(i == fr[n]) {
 94             re[i] = n;
 95         }
 96         update(i);
 97     }
 98 
 99     for(int i = 1, f, x, y, z; i <= n; i++) {
100         scanf("%d%d%d%d", &f, &x, &y, &z);
101         if(f == 0) {
102             change(x, y);
103         }
104         else {
105             int t = ask(x, y);
106             printf("%d\n", t);
107         }
108     }
109 
110     return 0;
111 }
AC代码

 第一个一次写对的分块...感动啊。

T7,区间加,乘,单点查值。

感觉这个顺序比较自然就先写7了...

跟线段树一样打两个标记即可。这个还不用记sum。

  1 #include <cstdio>
  2 #include <cmath>
  3 
  4 const int N = 100010, MO = 10007;
  5 
  6 int a[N], tagm[N], taga[N];
  7 int fr[N], le[N], re[N];
  8 
  9 inline void pushdown(int x) {
 10     if(tagm[x] != 1) {
 11         for(int i = le[x]; i <= re[x]; i++) {
 12             (a[i] *= tagm[x]) %= MO;
 13         }
 14         tagm[x] = 1;
 15     }
 16     if(taga[x] != 0) {
 17         for(int i = le[x]; i <= re[x]; i++) {
 18             (a[i] += taga[x]) %= MO;
 19         }
 20         taga[x] = 0;
 21     }
 22     return;
 23 }
 24 
 25 inline void add(int x, int y, int c) {
 26     int l = fr[x], r = fr[y];
 27     if(l == r) {
 28         pushdown(r);
 29         for(int i = x; i <= y; i++) {
 30             (a[i] += c) %= MO;
 31         }
 32         return;
 33     }
 34     for(int i = l + 1; i < r; i++) {
 35         (taga[i] += c) %= MO;
 36     }
 37     pushdown(l);
 38     for(int i = x; i <= re[l]; i++) {
 39         (a[i] += c) %= MO;
 40     }
 41     pushdown(r);
 42     for(int i = le[r]; i <= y; i++) {
 43         (a[i] += c) %= MO;
 44     }
 45     return;
 46 }
 47 
 48 inline void mul(int x, int y, int c) {
 49     int l = fr[x], r = fr[y];
 50     if(l == r) {
 51         pushdown(r);
 52         for(int i = x; i <= y; i++) {
 53             (a[i] *= c) %= MO;
 54         }
 55         return;
 56     }
 57     for(int i = l + 1; i < r; i++) {
 58         (tagm[i] *= c) %= MO;
 59         (taga[i] *= c) %= MO;
 60     }
 61     pushdown(l);
 62     for(int i = x; i <= re[l]; i++) {
 63         (a[i] *= c) %= MO;
 64     }
 65     pushdown(r);
 66     for(int i = le[r]; i <= y; i++) {
 67         (a[i] *= c) %= MO;
 68     }
 69     return;
 70 }
 71 
 72 inline int ask(int x) {
 73     return (a[x] * tagm[fr[x]] % MO + taga[fr[x]]) % MO;
 74 }
 75 
 76 int main() {
 77     int n;
 78     scanf("%d", &n);
 79     int T = sqrt(n);
 80     for(int i = 1; i <= n; i++) {
 81         scanf("%d", &a[i]);
 82         a[i] %= MO;
 83         fr[i] = (i - 1) / T + 1;
 84     }
 85     for(int i = 1; i <= fr[n]; i++) {
 86         le[i] = re[i - 1] + 1;
 87         re[i] = le[i] + T - 1;
 88         if(i == fr[n]) {
 89             re[i] = n;
 90         }
 91         tagm[i] = 1;
 92     }
 93 
 94     for(int i = 1, f, x, y, z; i <= n; i++) {
 95         scanf("%d%d%d%d", &f, &x, &y, &z);
 96         if(!f) {
 97             add(x, y, z % MO);
 98         }
 99         else if(f == 1) {
100             mul(x, y, z % MO);
101         }
102         else {
103             int t = ask(y);
104             printf("%d\n", t);
105         }
106     }
107 
108     return 0;
109 }
AC代码

T8,区间查询等于c的数的个数,并全部改为c。

又是玄学题目...复杂度懒得证了。

维护一个每段是否相同的标记。

  1 #include <cstdio>
  2 #include <cmath>
  3 
  4 const int N = 100010;
  5 
  6 int a[N], vis[N], tag[N];
  7 int fr[N], le[N], re[N];
  8 
  9 inline void solve(int x, int y, int c) {
 10     int l = fr[x], r = fr[y], ans = 0;
 11     if(l == r) {
 12         if(vis[r] && tag[r] == c) {
 13             printf("%d\n", y - x + 1);
 14             return;
 15         }
 16         else if(vis[r]) {
 17             vis[r] = 0;
 18             for(int i = le[r]; i <= re[r]; i++) {
 19                 if(x <= i && i <= y) {
 20                     a[i] = c;
 21                 }
 22                 else {
 23                     a[i] = tag[r];
 24                 }
 25             }
 26             puts("0");
 27             return;
 28         }
 29         for(int i = x; i <= y; i++) {
 30             ans += (a[i] == c);
 31             a[i] = c;
 32         }
 33         printf("%d\n", ans);
 34         return;
 35     }
 36     for(int i = l + 1; i < r; i++) {
 37         if(vis[i]) {
 38             ans += (tag[i] == c) * (re[i] - le[i] + 1);
 39             tag[i] = c;
 40         }
 41         else {
 42             vis[i] = 1;
 43             tag[i] = c;
 44             for(int j = le[i]; j <= re[i]; j++) {
 45                 ans += (a[j] == c);
 46             }
 47         }
 48     }
 49     if(vis[l] && tag[l] == c) {
 50         ans += (re[l] - x + 1);
 51     }
 52     else if(vis[l]) {
 53         vis[l] = 0;
 54         for(int i = le[l]; i < x; i++) {
 55             a[i] = tag[l];
 56         }
 57         for(int i = x; i <= re[l]; i++) {
 58             a[i] = c;
 59         }
 60     }
 61     else {
 62         for(int i = x; i <= re[l]; i++) {
 63             ans += (a[i] == c);
 64             a[i] = c;
 65         }
 66     }
 67 
 68     if(vis[r] && tag[r] == c) {
 69         ans += (y - le[r] + 1);
 70     }
 71     else if(vis[r]) {
 72         vis[r] = 0;
 73         for(int i = le[r]; i <= y; i++) {
 74             a[i] = c;
 75         }
 76         for(int i = y + 1; i <= re[r]; i++) {
 77             a[i] = tag[r];
 78         }
 79     }
 80     else {
 81         for(int i = le[r]; i <= y; i++) {
 82             ans += (a[i] == c);
 83             a[i] = c;
 84         }
 85     }
 86     printf("%d\n", ans);
 87     return;
 88 }
 89 
 90 int main() {
 91     int n;
 92     scanf("%d", &n);
 93     int T = sqrt(n);
 94     for(int i = 1; i <= n; i++) {
 95         scanf("%d", &a[i]);
 96         fr[i] = (i - 1) / T + 1;
 97     }
 98     for(int i = 1; i <= fr[n]; i++) {
 99         le[i] = re[i - 1] + 1;
100         re[i] = le[i] + T - 1;
101         if(i == fr[n]) {
102             re[i] = n;
103         }
104     }
105 
106     for(int i = 1, x, y, z; i <= n; i++) {
107         scanf("%d%d%d", &x, &y, &z);
108         solve(x, y, z);
109     }
110 
111     return 0;
112 }
AC代码

T9,静态区间众数。

这道题可以用三种方法,两种在线一种离线。

离线是莫队套值域线段树,维护出现次数最大值,复杂度O(n1.5logn),可能需要卡常......

好像可以做到n√n...开两个桶,第一个维护出现次数,第二个维护出现次数为i的有几个数。

在线:

有一个共通的就是,需要预处理出块两两之间的众数。

然后对于某询问,答案要么是块(l, r)之间的众数,要么是在两边出现的数。

枚举两边出现的数,这不超过2n0.5个,然后对于每个数查询出现次数即可。

①:

处理出sum[i][j]表示前i块中j出现的次数。

查询时用n0.5的时间调整附近两块的sum到查询区间的sum,然后可以做到O(1)查询。之后再还原。

预处理:块i,j之间的众数,要么是块i,j - 1的众数,要么是第j块中的数。枚举查询即可。

时间复杂度:O(n1.5 + n1.5),空间复杂度:O(n1.5)

  1 #include <cstdio>
  2 #include <algorithm>
  3 #include <cmath>
  4 
  5 const int N = 100010;
  6 
  7 int a[N], sum[350][N], X[N], fr[N], le[N], re[N], md[350][350];
  8 
  9 inline int ask(int x, int y) {
 10     int l = fr[x], r = fr[y];
 11     int ans = md[l + 1][r - 1];
 12     if(l == r) {
 13         for(int i = le[l]; i < x; i++) {
 14             sum[l - 1][a[i]]++;
 15         }
 16         for(int i = y + 1; i <= re[r]; i++) {
 17             sum[r][a[i]]--;
 18         }
 19         //
 20         for(int i = x; i <= y; i++) {
 21             if(sum[r][a[i]] - sum[l - 1][a[i]] > sum[r][ans] - sum[l - 1][ans]) {
 22                 ans = a[i];
 23             }
 24             else if(sum[r][a[i]] - sum[l - 1][a[i]] == sum[r][ans] - sum[l - 1][ans]) {
 25                 ans = std::min(ans, a[i]);
 26             }
 27         }
 28         //
 29         for(int i = le[l]; i < x; i++) {
 30             sum[l - 1][a[i]]--;
 31         }
 32         for(int i = y + 1; i <= re[r]; i++) {
 33             sum[r][a[i]]++;
 34         }
 35         return ans;
 36     }
 37     for(int i = le[l]; i < x; i++) {
 38         sum[l - 1][a[i]]++;
 39     }
 40     for(int i = y + 1; i <= re[r]; i++) {
 41         sum[r][a[i]]--;
 42     }
 43     //
 44     for(int i = x; i <= re[l]; i++) {
 45         if(sum[r][a[i]] - sum[l - 1][a[i]] > sum[r][ans] - sum[l - 1][ans]) {
 46             ans = a[i];
 47         }
 48         else if(sum[r][a[i]] - sum[l - 1][a[i]] == sum[r][ans] - sum[l - 1][ans]) {
 49             ans = std::min(ans, a[i]);
 50         }
 51     }
 52     for(int i = le[r]; i <= y; i++) {
 53         if(sum[r][a[i]] - sum[l - 1][a[i]] > sum[r][ans] - sum[l - 1][ans]) {
 54             ans = a[i];
 55         }
 56         else if(sum[r][a[i]] - sum[l - 1][a[i]] == sum[r][ans] - sum[l - 1][ans]) {
 57             ans = std::min(ans, a[i]);
 58         }
 59     }
 60     //
 61     for(int i = le[l]; i < x; i++) {
 62         sum[l - 1][a[i]]--;
 63     }
 64     for(int i = y + 1; i <= re[r]; i++) {
 65         sum[r][a[i]]++;
 66     }
 67     return ans;
 68 }
 69 
 70 int main() {
 71     int n;
 72     scanf("%d", &n);
 73     int T = sqrt(n);
 74     for(int i = 1; i <= n; i++) {
 75         scanf("%d", &a[i]);
 76         fr[i] = (i - 1) / T + 1;
 77         X[i] = a[i];
 78     }
 79     std::sort(X + 1, X + n + 1);
 80     int temp = std::unique(X + 1, X + n + 1) - X - 1;
 81     for(int i = 1; i <= fr[n]; i++) {
 82         le[i] = re[i - 1] + 1;
 83         re[i] = le[i] + T - 1;
 84         if(i == fr[n]) {
 85             re[i] = n;
 86         }
 87     }
 88     for(int i = 1; i <= n; i++) {
 89         a[i] = std::lower_bound(X + 1, X + temp + 1, a[i]) - X;
 90         sum[fr[i]][a[i]]++;
 91     }
 92     for(int i = 1; i <= fr[n]; i++) {
 93         for(int j = 1; j <= temp; j++) {
 94             sum[i][j] += sum[i - 1][j];
 95         }
 96     }
 97     for(int l = 1; l <= fr[n]; l++) {
 98         for(int r = l; r <= fr[n]; r++) {
 99             // md l r
100             md[l][r] = md[l][r - 1];
101             for(int i = le[r]; i <= re[r]; i++) {
102                 // md[l][r] a[i]
103                 if(sum[r][a[i]] - sum[l - 1][a[i]] > sum[r][md[l][r]] - sum[l - 1][md[l][r]]) {
104                     md[l][r] = a[i];
105                 }
106                 else if(sum[r][a[i]] - sum[l - 1][a[i]] == sum[r][md[l][r]] - sum[l - 1][md[l][r]]) {
107                     md[l][r] = std::min(md[l][r], a[i]);
108                 }
109             }
110         }
111     }
112 
113     for(int i = 1, x, y; i <= n; i++) {
114         scanf("%d%d", &x, &y);
115         int t = ask(x, y);
116         printf("%d\n", X[t]);
117     }
118 
119     return 0;
120 }
AC代码

②:实测TLE,但是思路值得借鉴:

使用n个vector,v[i]表示i出现的下标。

查询的时候在对应vector里面二分左右边界的下标,然后相减,就是出现次数。

  1 #include <cstdio>
  2 #include <algorithm>
  3 #include <cmath>
  4 #include <vector>
  5 
  6 const int N = 40010;
  7 
  8 int a[N], fr[N], le[N], re[N], md[250][250], X[N];
  9 std::vector<int> v[N];
 10 
 11 inline int cnt(int x, int y, int c) {
 12     x = std::lower_bound(v[c].begin(), v[c].end(), x) - v[c].begin();
 13     y = std::upper_bound(v[c].begin(), v[c].end(), y) - v[c].begin();
 14     // [x, y)
 15     return y - x;
 16 }
 17 
 18 inline int ask(int x, int y) {
 19     int l = fr[x], r = fr[y];
 20     int ans = md[l + 1][r - 1];
 21     int large = cnt(x, y, ans);
 22     if(l == r) {
 23         for(int i = x; i <= y; i++) {
 24             int A = cnt(x, y, a[i]);
 25             if(A > large) {
 26                 large = A;
 27                 ans = a[i];
 28             }
 29             else if(A == large) {
 30                 ans = std::min(ans, a[i]);
 31             }
 32         }
 33         return ans;
 34     }
 35     for(int i = x; i <= re[l]; i++) {
 36         int A = cnt(x, y, a[i]);
 37         if(A > large) {
 38             large = A;
 39             ans = a[i];
 40         }
 41         else if(A == large) {
 42             ans = std::min(ans, a[i]);
 43         }
 44     }
 45     for(int i = le[r]; i <= y; i++) {
 46         int A = cnt(x, y, a[i]);
 47         if(A > large) {
 48             large = A;
 49             ans = a[i];
 50         }
 51         else if(A == large) {
 52             ans = std::min(ans, a[i]);
 53         }
 54     }
 55     return ans;
 56 }
 57 
 58 int main() {
 59     int n;
 60     scanf("%d", &n);
 61     int T = sqrt(n);
 62     for(int i = 1; i <= n; i++) {
 63         scanf("%d", &a[i]);
 64         fr[i] = (i - 1) / T + 1;
 65         X[i] = a[i];
 66     }
 67     for(int i = 1; i <= fr[n]; i++) {
 68         le[i] = re[i - 1] + 1;
 69         re[i] = le[i] + T - 1;
 70         if(i == fr[n]) {
 71             re[i] = n;
 72         }
 73     }
 74     std::sort(X + 1, X + n + 1);
 75     int temp = std::unique(X + 1, X + n + 1) - X - 1;
 76     for(int i = 1; i <= n; i++) {
 77         a[i] = std::lower_bound(X + 1, X + temp + 1, a[i]) - X;
 78         v[a[i]].push_back(i);
 79     }
 80     for(int i = 1; i <= temp; i++) {
 81         std::sort(v[i].begin(), v[i].end());
 82     }
 83     for(int l = 1; l <= fr[n]; l++) {
 84         for(int r = l; r <= fr[n]; r++) {
 85             md[l][r] = md[l][r - 1];
 86             int large = cnt(le[l], re[r], md[l][r]);
 87             for(int i = le[r]; i <= re[r]; i++) {
 88                 int A = cnt(le[l], re[r], a[i]);
 89                 if(A > large) {
 90                     md[l][r] = a[i];
 91                     large = A;
 92                 }
 93                 else if(A == large) {
 94                     md[l][r] = std::min(md[l][r], a[i]);
 95                 }
 96             }
 97         }
 98     }
 99 
100     for(int i = 1, x, y; i <= n; i++) {
101         scanf("%d%d", &x, &y);
102         int t = ask(x, y);
103         printf("%d\n", X[t]);
104     }
105 
106     return 0;
107 }
TLE代码

还有带修区间众数...没找到啥题,算了。真的遇到就直接上n²好了。

可以带修莫队套值域线段树,n5/3logn跟n²也差不了多少了...50000的复杂度是10亿呢。

有一种n1.5logn的做法,懒得学了...

T6,单点插入,单点求值。

块状链表,学鬼啊,直接splay水过去算了。

  1 #include <cstdio>
  2 #include <algorithm>
  3 
  4 const int N = 2000010;
  5 
  6 int fa[N], s[N][2], val[N], S[N], Sp, siz[N], root, tot, A[N];
  7 bool rev[N];
  8 
  9 inline void pushup(int x) {
 10     siz[x] = siz[s[x][0]] + siz[s[x][1]] + 1;
 11     if(!fa[x]) {
 12         root = x;
 13     }
 14     return;
 15 }
 16 
 17 inline void pushdown(int x) {
 18     if(rev[x]) {
 19         if(s[x][0]) {
 20             rev[s[x][0]] ^= 1;
 21         }
 22         if(s[x][1]) {
 23             rev[s[x][1]] ^= 1;
 24         }
 25         std::swap(s[x][0], s[x][1]);
 26         rev[x] = 0;
 27     }
 28     return;
 29 }
 30 
 31 inline void rotate(int x) {
 32     int y = fa[x];
 33     int z = fa[y];
 34     bool f = (s[y][1] == x);
 35 
 36     fa[x] = z;
 37     if(z) {
 38         s[z][s[z][1] == y] = x;
 39     }
 40     s[y][f] = s[x][!f];
 41     if(s[x][!f]) {
 42         fa[s[x][!f]] = y;
 43     }
 44     s[x][!f] = y;
 45     fa[y] = x;
 46 
 47     pushup(y);
 48     pushup(x);
 49     return;
 50 }
 51 
 52 inline void splay(int x, int g = 0) {
 53     int y = x;
 54     S[++Sp] = y;
 55     while(fa[y]) {
 56         y = fa[y];
 57         S[++Sp] = y;
 58     }
 59     while(Sp) {
 60         pushdown(S[Sp]);
 61         Sp--;
 62     }
 63 
 64     y = fa[x];
 65     int z = fa[y];
 66     while(y != g) {
 67         if(z != g) {
 68             (s[z][1] == y) ^ (s[y][1] == x) ?
 69             rotate(x) : rotate(y);
 70         }
 71         rotate(x);
 72         y = fa[x];
 73         z = fa[y];
 74     }
 75     return;
 76 }
 77 
 78 inline int np(int x, int f) {
 79     ++tot;
 80     val[tot] = x;
 81     fa[tot] = f;
 82     pushup(tot);
 83     return tot;
 84 }
 85 
 86 int build(int l, int r, int f) {
 87     int mid = (l + r) >> 1;
 88     int p = np(A[mid], f);
 89     if(l < mid) {
 90         s[p][0] = build(l, mid - 1, p);
 91     }
 92     if(mid < r) {
 93         s[p][1] = build(mid + 1, r, p);
 94     }
 95     pushup(p);
 96     return p;
 97 }
 98 
 99 void out(int x) {
100     if(s[x][0]) {
101         out(s[x][0]);
102     }
103     printf("%d", val[x]);
104     if(s[x][1]) {
105         out(s[x][1]);
106     }
107     return;
108 }
109 
110 inline int getPbyR(int k) {
111     int p = root;
112     while(1) {
113         pushdown(p);
114         if(siz[s[p][0]] >= k) {
115             p = s[p][0];
116         }
117         else if(siz[s[p][0]] + 1 == k) {
118             break;
119         }
120         else {
121             k -= (siz[s[p][0]] + 1);
122             p = s[p][1];
123         }
124     }
125     splay(p);
126     return p;
127 }
128 
129 inline int getRP() {
130     pushdown(root);
131     int p = s[root][1];
132     pushdown(p);
133     while(s[p][0]) {
134         p = s[p][0];
135         pushdown(p);
136     }
137     return p;
138 }
139 
140 inline void insert(int k, int c) { // after k insert c
141     int y = getPbyR(k + 1);
142     int x = getRP();
143     splay(x, y);
144     s[x][0] = build(1, c, x);
145     pushup(x);
146     pushup(y);
147     return;
148 }
149 
150 inline void ask(int l, int r) {
151     int x = getPbyR(l);
152     int y = getPbyR(r + 2);
153     splay(x, y);
154     out(s[x][1]);
155     puts("");
156     return;
157 }
158 
159 int main() {
160     int n;
161     scanf("%d", &n);
162     for(int i = 1; i <= n; i++) {
163         scanf("%d", &A[i]);
164     }
165     root = build(0, n + 1, 0);
166     //out(root);
167     //puts("");
168     for(int i = 1, x, y, z, f; i <= n; i++) {
169         scanf("%d%d%d%d", &f, &x, &y, &z);
170         if(!f) {
171             A[1] = y;
172             insert(x - 1, 1);
173         }
174         else {
175             ask(y, y);
176         }
177         //out(root);
178         //puts("");
179     }
180 
181     return 0;
182 }
AC代码

总结:分块就是暴力乱搞......不过很有效,还可能是正解。还能干一些别的数据结构搞不倒的事。

posted @ 2018-12-26 19:28  huyufeifei  阅读(149)  评论(0编辑  收藏  举报
试着放一个广告栏(虽然没有一分钱广告费)

『Flyable Heart 応援中!』 HHG 高苗京铃 闪十PSS 双六 電動伝奇堂 章鱼罐头制作组 はきか 祝姬 星降夜