C-MAPSS数据集预处理代码

数据预处理代码(语言为python)

代码来源于《Variational encoding approach for interpretable assessment of remaining useful life estimation》作者的公开代码,笔者有更改,不保证绝对正确,请谨慎使用。
github: https://github.com/NahuelCostaCortez/Remaining-Useful-Life-Estimation-Variational

import numpy as np
from sklearn.model_selection import GroupShuffleSplit
from sklearn.preprocessing import StandardScaler
import pandas as pd

def add_remaining_useful_life(df):
    # Get the total number of cycles for each unit
    grouped_by_unit = df.groupby(by="unit_nr")
    max_cycle = grouped_by_unit["time_cycles"].max()
    
    # Merge the max cycle back into the original frame
    result_frame = df.merge(max_cycle.to_frame(name='max_cycle'), left_on='unit_nr', right_index=True)
    
    # Calculate remaining useful life for each row
    remaining_useful_life = result_frame["max_cycle"] - result_frame["time_cycles"]
    result_frame["RUL"] = remaining_useful_life
    
    # drop max_cycle as it's no longer needed
    result_frame = result_frame.drop("max_cycle", axis=1)
    return result_frame

def add_operating_condition(df):
    df_op_cond = df.copy()
    
    df_op_cond['setting_1'] = abs(df_op_cond['setting_1'].round())
    df_op_cond['setting_2'] = abs(df_op_cond['setting_2'].round(decimals=2))
    
    # converting settings to string and concatanating makes the operating condition into a categorical variable
    df_op_cond['op_cond'] = df_op_cond['setting_1'].astype(str) + '_' + \
                        df_op_cond['setting_2'].astype(str) + '_' + \
                        df_op_cond['setting_3'].astype(str)
    
    return df_op_cond

def condition_scaler(df_train, df_test, sensor_names):
    # apply operating condition specific scaling
    scaler = StandardScaler()
    for condition in df_train['op_cond'].unique():
        scaler.fit(df_train.loc[df_train['op_cond']==condition, sensor_names])
        df_train.loc[df_train['op_cond']==condition, sensor_names] = scaler.transform(df_train.loc[df_train['op_cond']==condition, sensor_names])
        df_test.loc[df_test['op_cond']==condition, sensor_names] = scaler.transform(df_test.loc[df_test['op_cond']==condition, sensor_names])
    return df_train, df_test

def exponential_smoothing(df, sensors, n_samples, alpha=0.4):
    df = df.copy()
    # first, take the exponential weighted mean
    df[sensors] = df.groupby('unit_nr')[sensors].apply(lambda x: x.ewm(alpha=alpha).mean()).reset_index(level=0, drop=True)
    
    # second, drop first n_samples of each unit_nr to reduce filter delay
    def create_mask(data, samples):
        result = np.ones_like(data)
        result[0:samples] = 0
        return result
    
    mask = df.groupby('unit_nr')['unit_nr'].transform(create_mask, samples=n_samples).astype(bool)
    df = df[mask]
    
    return df

def gen_train_data(df, sequence_length, columns):
    data = df[columns].values
    num_elements = data.shape[0]

    # -1 and +1 because of Python indexing
    for start, stop in zip(range(0, num_elements-(sequence_length-1)), range(sequence_length, num_elements+1)):
        yield data[start:stop, :]
        
def gen_data_wrapper(df, sequence_length, columns, unit_nrs=np.array([])):
    if unit_nrs.size <= 0:
        unit_nrs = df['unit_nr'].unique()
        
    data_gen = (list(gen_train_data(df[df['unit_nr']==unit_nr], sequence_length, columns))
               for unit_nr in unit_nrs)
    data_array = np.concatenate(list(data_gen)).astype(np.float32)
    return data_array

def gen_labels(df, sequence_length, label):
    data_matrix = df[label].values
    num_elements = data_matrix.shape[0]

    # -1 because I want to predict the rul of that last row in the sequence, not the next row
    return data_matrix[sequence_length-1:num_elements, :]  

def gen_label_wrapper(df, sequence_length, label, unit_nrs=np.array([])):
    if unit_nrs.size <= 0:
        unit_nrs = df['unit_nr'].unique()
        
    label_gen = [gen_labels(df[df['unit_nr']==unit_nr], sequence_length, label) 
                for unit_nr in unit_nrs]
    label_array = np.concatenate(label_gen).astype(np.float32)
    return label_array

def gen_test_data(df, sequence_length, columns, mask_value):
    if df.shape[0] < sequence_length:
        data_matrix = np.full(shape=(sequence_length, len(columns)), fill_value=mask_value) # pad
        idx = data_matrix.shape[0] - df.shape[0]
        data_matrix[idx:,:] = df[columns].values  # fill with available data
    else:
        data_matrix = df[columns].values
        
    # specifically yield the last possible sequence
    stop = data_matrix.shape[0]
    start = stop - sequence_length
    for i in list(range(1)):
        yield data_matrix[start:stop, :]  
        
	
def get_data(dataset, sensors, sequence_length, alpha, threshold):
	# files
	dir_path = './data/'
	train_file = 'train_'+dataset+'.txt'
	test_file = 'test_'+dataset+'.txt'
    # columns
	index_names = ['unit_nr', 'time_cycles']
	setting_names = ['setting_1', 'setting_2', 'setting_3']
	sensor_names = ['s_{}'.format(i+1) for i in range(0,21)]
	col_names = index_names + setting_names + sensor_names
    # data readout
	train = pd.read_csv((dir_path+train_file), sep=r'\s+', header=None, 
					 names=col_names)
	test = pd.read_csv((dir_path+test_file), sep=r'\s+', header=None, 
					 names=col_names)
	y_test = pd.read_csv((dir_path+'RUL_'+dataset+'.txt'), sep=r'\s+', header=None, 
					 names=['RemainingUsefulLife'])

    # create RUL values according to the piece-wise target function
	train = add_remaining_useful_life(train)
	train['RUL'].clip(upper=threshold, inplace=True)
	y_test['RemainingUsefulLife'].clip(upper=threshold, inplace=True)
    # remove unused sensors
	drop_sensors = [element for element in sensor_names if element not in sensors]

    # scale with respect to the operating condition
	X_train_pre = add_operating_condition(train.drop(drop_sensors, axis=1))
	X_test_pre = add_operating_condition(test.drop(drop_sensors, axis=1))
	X_train_pre, X_test_pre = condition_scaler(X_train_pre, X_test_pre, sensors)

    # exponential smoothing
	X_train_pre= exponential_smoothing(X_train_pre, sensors, 0, alpha)
	X_test_pre = exponential_smoothing(X_test_pre, sensors, 0, alpha)

	# train-val split
	gss = GroupShuffleSplit(n_splits=1, train_size=0.80, random_state=42)
	# generate the train/val for *each* sample -> for that we iterate over the train and val units we want
	# this is a for that iterates only once and in that iterations at the same time iterates over all the values we want,
	# i.e. train_unit and val_unit are not a single value but a set of training/vali units
	for train_unit, val_unit in gss.split(X_train_pre['unit_nr'].unique(), groups=X_train_pre['unit_nr'].unique()): 
		train_unit = X_train_pre['unit_nr'].unique()[train_unit]  # gss returns indexes and index starts at 1
		val_unit = X_train_pre['unit_nr'].unique()[val_unit]

		x_train = gen_data_wrapper(X_train_pre, sequence_length, sensors, train_unit)
		y_train = gen_label_wrapper(X_train_pre, sequence_length, ['RUL'], train_unit)
		
		x_val = gen_data_wrapper(X_train_pre, sequence_length, sensors, val_unit)
		y_val = gen_label_wrapper(X_train_pre, sequence_length, ['RUL'], val_unit)

	# create sequences for test 
	test_gen = (list(gen_test_data(X_test_pre[X_test_pre['unit_nr']==unit_nr], sequence_length, sensors, -99.))
			   for unit_nr in X_test_pre['unit_nr'].unique())
	x_test = np.concatenate(list(test_gen)).astype(np.float32)
	
	return x_train, y_train, x_val, y_val, x_test, y_test['RemainingUsefulLife].values.reshape(-1, 1)

代码来源于《Variational encoding approach for interpretable assessment of remaining useful life estimation》作者的公开代码,笔者有更改,不保证绝对正确,请谨慎使用,谢谢。
github: https://github.com/NahuelCostaCortez/Remaining-Useful-Life-Estimation-Variational

posted @ 2023-06-01 11:09  woxin_lab  阅读(3198)  评论(0编辑  收藏  举报