【原创】Kafka Consumer多线程消费
上一篇《Kafka Consumer多线程实例续篇》修正了多线程提交位移的问题,但依然可能出现数据丢失的情况,原因在于多个线程可能拿到相同分区的数据,而消费的顺序会破坏消息本身在分区中的顺序,因而扰乱位移的提交。这次我使用KafkaConsumer的pause和resume方法来防止这种情形的发生。另外,本次我会编写一个测试类用于验证消费相同数量消息时,单线程消费速度要远逊于多线程消费。
概述
这一次,我编写了5个java文件,它们分别是:
- OrdinaryConsumer.java:普通的单线程Consumer,用于后面进行性能测试对比用。
- ConsumerWorker.java:多线程消息处理类,本质上就是一个Runnable。会被提交给线程池用于实际消息处理。
- MultiThreadedConsumer.java:多线程Consumer主控类,用于将消息分配给不同的ConsumerWorker,并且管理位移的提交。
- MultiThreadedRebalanceListener.java:为多线程Consumer服务的Rebalance监听器。
- Test.java:用于测试单线程和多线程性能。
OrdinaryConsumer类
单线程的Consumer最简单,我首先给出它的代码:
package huxihx.mtc; import org.apache.kafka.clients.consumer.Consumer; import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.kafka.clients.consumer.KafkaConsumer; import org.apache.kafka.common.serialization.StringDeserializer; import java.time.Duration; import java.util.Collections; import java.util.Properties; import java.util.concurrent.ThreadLocalRandom; /** * 单线程Consumer */ public class OrdinaryConsumer { private final Consumer<String, String> consumer; private final int expectedCount; // 用于测试的消息数量 public OrdinaryConsumer(String brokerId, String topic, String groupID, int expectedCount) { Properties props = new Properties(); props.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, brokerId); props.setProperty(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); props.setProperty(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); props.setProperty(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true"); props.setProperty(ConsumerConfig.GROUP_ID_CONFIG, groupID); props.setProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest"); consumer = new KafkaConsumer<>(props); consumer.subscribe(Collections.singletonList(topic)); this.expectedCount = expectedCount; } public void run() { try { int alreadyConsumed = 0; while (alreadyConsumed < expectedCount) { ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(1)); alreadyConsumed += records.count(); records.forEach(this::handleRecord); } } finally { consumer.close(); } } private void handleRecord(ConsumerRecord<String, String> record) { try { // 模拟每条消息10毫秒处理 Thread.sleep(ThreadLocalRandom.current().nextInt(10)); } catch (InterruptedException ignored) { Thread.currentThread().interrupt(); } System.out.println(Thread.currentThread().getName() + " finished message processed. Record offset = " + record.offset()); } }
代码很简单,没什么可说的。唯一要说的是Consumer会模拟10毫秒处理一条事件。后面多线程Consumer我们也会使用相同的标准。
ConsumerWorker.java
接下来是消息处理的Runnable类:ConsumerWorker。和上一篇相比,这次最大的不同在于每个Worker只处理相同分区下的消息,而不是向之前那样处理多个分区中的消息。这样做的好处在于一旦某个分区的消息分配给了这个Worker,我可以暂停这个分区的可消费状态,直到这个Worker全部处理完成。如果是混着多个分区的消息一起处理,实现这个就比较困难。ConsumerWorker代码如下:
package huxihx.mtc; import org.apache.kafka.clients.consumer.ConsumerRecord; import java.util.List; import java.util.concurrent.CompletableFuture; import java.util.concurrent.ThreadLocalRandom; import java.util.concurrent.TimeUnit; import java.util.concurrent.atomic.AtomicLong; import java.util.concurrent.locks.ReentrantLock; public class ConsumerWorker<K, V> { private final List<ConsumerRecord<K, V>> recordsOfSamePartition; private volatile boolean started = false; private volatile boolean stopped = false; private final ReentrantLock lock = new ReentrantLock(); private final long INVALID_COMMITTED_OFFSET = -1L; private final AtomicLong latestProcessedOffset = new AtomicLong(INVALID_COMMITTED_OFFSET); private final CompletableFuture<Long> future = new CompletableFuture<>(); public ConsumerWorker(List<ConsumerRecord<K, V>> recordsOfSamePartition) { this.recordsOfSamePartition = recordsOfSamePartition; } public boolean run() { lock.lock(); if (stopped) return false; started = true; lock.unlock(); for (ConsumerRecord<K, V> record : recordsOfSamePartition) { if (stopped) break; handleRecord(record); if (latestProcessedOffset.get() < record.offset() + 1) latestProcessedOffset.set(record.offset() + 1); } return future.complete(latestProcessedOffset.get()); } public long getLatestProcessedOffset() { return latestProcessedOffset.get(); } private void handleRecord(ConsumerRecord<K, V> record) { try { Thread.sleep(ThreadLocalRandom.current().nextInt(10)); } catch (InterruptedException ignored) { Thread.currentThread().interrupt(); } System.out.println(Thread.currentThread().getName() + " finished message processed. Record offset = " + record.offset()); } public void close() { lock.lock(); this.stopped = true; if (!started) { future.complete(latestProcessedOffset.get()); } lock.unlock(); } public boolean isFinished() { return future.isDone(); } public long waitForCompletion(long timeout, TimeUnit timeUnit) { try { return future.get(timeout, timeUnit); } catch (Exception e) { if (e instanceof InterruptedException) Thread.currentThread().interrupt(); return INVALID_COMMITTED_OFFSET; } } }
需要说明的地方有以下几点:
- latestProcessedOffset:使用这个变量保存该Worker当前已消费的最新位移。
- future:使用CompletableFuture来保存Worker要提交的位移。
- Worker成功操作与否的标志就是看这个future是否将latestProcessedOffset值封装到结果中。
- handleRecord和单线程Consumer中的一致,模拟10ms处理消息。
MultiThreadedConsumer.java
构建好了ConsumerWorker类之后,下面是编写多线程Consumer的主控类,该类循环执行:1、创建Consumer;2、读取订阅分区的消息;3、将消息按照不同分区进行归组分发给不同的线程;4、暂停这些分区的后续消费,同时等待Worker线程完成消息处理;5、提交这些分区的位移;6、恢复这些分区的消费。
以下代码是MultiThreadedConsumer类的完整代码:
package huxihx.mtc; import org.apache.kafka.clients.consumer.Consumer; import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.kafka.clients.consumer.KafkaConsumer; import org.apache.kafka.clients.consumer.OffsetAndMetadata; import org.apache.kafka.common.TopicPartition; import org.apache.kafka.common.serialization.StringDeserializer; import java.time.Duration; import java.util.Collections; import java.util.HashMap; import java.util.HashSet; import java.util.List; import java.util.Map; import java.util.Properties; import java.util.Set; import java.util.concurrent.CompletableFuture; import java.util.concurrent.Executor; import java.util.concurrent.Executors; public class MultiThreadedConsumer { private final Map<TopicPartition, ConsumerWorker<String, String>> outstandingWorkers = new HashMap<>(); private final Map<TopicPartition, OffsetAndMetadata> offsetsToCommit = new HashMap<>(); private long lastCommitTime = System.currentTimeMillis(); private final Consumer<String, String> consumer; private final int DEFAULT_COMMIT_INTERVAL = 3000; private final Map<TopicPartition, Long> currentConsumedOffsets = new HashMap<>(); private final long expectedCount; private final static Executor executor = Executors.newFixedThreadPool( Runtime.getRuntime().availableProcessors() * 10, r -> { Thread t = new Thread(r); t.setDaemon(true); return t; }); public MultiThreadedConsumer(String brokerId, String topic, String groupID, long expectedCount) { Properties props = new Properties(); props.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, brokerId); props.setProperty(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); props.setProperty(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); props.setProperty(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false"); props.setProperty(ConsumerConfig.GROUP_ID_CONFIG, groupID); props.setProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest"); consumer = new KafkaConsumer<>(props); consumer.subscribe(Collections.singletonList(topic), new MultiThreadedRebalanceListener(consumer, outstandingWorkers, offsetsToCommit)); this.expectedCount = expectedCount; } public void run() { try { while (true) { ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(1)); distributeRecords(records); checkOutstandingWorkers(); commitOffsets(); if (currentConsumedOffsets.values().stream().mapToLong(Long::longValue).sum() >= expectedCount) { break; } } } finally { consumer.close(); } } /** * 对已完成消息处理并提交位移的分区执行resume操作 */ private void checkOutstandingWorkers() { Set<TopicPartition> completedPartitions = new HashSet<>(); outstandingWorkers.forEach((tp, worker) -> { if (worker.isFinished()) { completedPartitions.add(tp); } long offset = worker.getLatestProcessedOffset(); currentConsumedOffsets.put(tp, offset); if (offset > 0L) { offsetsToCommit.put(tp, new OffsetAndMetadata(offset)); } }); completedPartitions.forEach(outstandingWorkers::remove); consumer.resume(completedPartitions); } /** * 提交位移 */ private void commitOffsets() { try { long currentTime = System.currentTimeMillis(); if (currentTime - lastCommitTime > DEFAULT_COMMIT_INTERVAL && !offsetsToCommit.isEmpty()) { consumer.commitSync(offsetsToCommit); offsetsToCommit.clear(); } lastCommitTime = currentTime; } catch (Exception e) { e.printStackTrace(); } } /** * 将不同分区的消息交由不同的线程,同时暂停该分区消息消费 * @param records */ private void distributeRecords(ConsumerRecords<String, String> records) { if (records.isEmpty()) return; Set<TopicPartition> pausedPartitions = new HashSet<>(); records.partitions().forEach(tp -> { List<ConsumerRecord<String, String>> partitionedRecords = records.records(tp); pausedPartitions.add(tp); final ConsumerWorker<String, String> worker = new ConsumerWorker<>(partitionedRecords); CompletableFuture.supplyAsync(worker::run, executor); outstandingWorkers.put(tp, worker); }); consumer.pause(pausedPartitions); } }
该类代码需要说明的地方包括:
- executor:我创建了一个包含10倍CPU核数的线程数。具体线程数根据你自己的业务需求而定。如果你的事件处理逻辑是I/O密集型操作(比如写入外部系统),那么设置一个大一点的线程数通常都是有意义的。当然,我个人觉得最好不要超过Consumer分配到的总分区数。
- 一定要将自动提交位移的参数设置为false。多线程Consumer的一个关键设计就是要手动提交位移。
- Rebalance监听器设置为MultiThreadedRebalanceListener。这个类如何响应分区的回收与分配我们稍后讨论。
- run方法的逻辑基本上遵循了上面提到的流程:消息获取 -> 分发 -> 检查消费进度 -> 提交位移
- expectedCount:这是为了后面进行性能测试比对用到的总消息消费数。
MultiThreadedRebalanceListener.java
多线程Consumer在Rebalance操作开启后要小心处理。首先,主线程的poll方法与Worker线程处理消息是并行执行的。此时如果发生Rebalance,那么有些分区就会被分配给其他Consumer,但Worker线程依然可能正在处理这些分区。因此,就可能出现这样的场景:两个Consumer都会处理这些分区中的消息。这就破坏了消费者组的设计理念。针对这种情况,我们必须要确保要被回收的那些分区的处理必须首先完成,之后才能被重新分配。
总体而言,在要回收分区前,多线程Consumer必须完成:
- 停止对应的Worker线程
- 提交位移
当然,一旦分区被重新分配后,事情就变得简单了,我们调用resume恢复这些分区的可消费状态即可。如果这些分区之前就是可以消费的,那么调用resume方法就没有任何效果,总之是一个“无害”操作。MultiThreadedRebalanceListener类完整代码如下:
package huxihx.mtc; import org.apache.kafka.clients.consumer.Consumer; import org.apache.kafka.clients.consumer.ConsumerRebalanceListener; import org.apache.kafka.clients.consumer.OffsetAndMetadata; import org.apache.kafka.common.TopicPartition; import java.util.Collection; import java.util.HashMap; import java.util.Map; import java.util.concurrent.TimeUnit; public class MultiThreadedRebalanceListener implements ConsumerRebalanceListener { private final Consumer<String, String> consumer; private final Map<TopicPartition, ConsumerWorker<String, String>> outstandingWorkers; private final Map<TopicPartition, OffsetAndMetadata> offsets; public MultiThreadedRebalanceListener(Consumer<String, String> consumer, Map<TopicPartition, ConsumerWorker<String, String>> outstandingWorkers, Map<TopicPartition, OffsetAndMetadata> offsets) { this.consumer = consumer; this.outstandingWorkers = outstandingWorkers; this.offsets = offsets; } @Override public void onPartitionsRevoked(Collection<TopicPartition> partitions) { Map<TopicPartition, ConsumerWorker<String, String>> stoppedWorkers = new HashMap<>(); for (TopicPartition tp : partitions) { ConsumerWorker<String, String> worker = outstandingWorkers.remove(tp); if (worker != null) { worker.close(); stoppedWorkers.put(tp, worker); } } stoppedWorkers.forEach((tp, worker) -> { long offset = worker.waitForCompletion(1, TimeUnit.SECONDS); if (offset > 0L) { offsets.put(tp, new OffsetAndMetadata(offset)); } }); Map<TopicPartition, OffsetAndMetadata> revokedOffsets = new HashMap<>(); partitions.forEach(tp -> { OffsetAndMetadata offset = offsets.remove(tp); if (offset != null) { revokedOffsets.put(tp, offset); } }); try { consumer.commitSync(revokedOffsets); } catch (Exception e) { e.printStackTrace(); } } @Override public void onPartitionsAssigned(Collection<TopicPartition> partitions) { consumer.resume(partitions); } }
该类代码需要说明的地方包括:
- 任何Rebalance监听器都要实现ConsumerRebalanceListener接口。
- 该类定义了3个字段,分别保存Consumer实例、要停掉的Worker线程实例以及要提交的位移数据。
- 主要的逻辑在onPartitionsRevoked方法中实现。第一步是停掉Worker线程;第二步是手动提交位移。
Test.java
说完了以上4个Java类之后,现在我们编写一个测试类来比较单线程Consumer和多线程Consumer的性能对比。首先我们创建一个topic,50个分区,单副本,并使用kafka-producer-perf-test工具创建5万条消息,每个分区1000条。之后编写如下代码分别测试两个Consumer的消费耗时:
package huxihx.mtc; public class Test { public static void main(String[] args) throws InterruptedException { int expectedCount = 50 * 900; String brokerId = "localhost:9092"; String groupId = "test-group"; String topic = "test"; OrdinaryConsumer consumer = new OrdinaryConsumer(brokerId, topic, groupId + "-single", expectedCount); long start = System.currentTimeMillis(); consumer.run(); System.out.println("Single-threaded consumer costs " + (System.currentTimeMillis() - start)); Thread.sleep(1L); MultiThreadedConsumer multiThreadedConsumer = new MultiThreadedConsumer(brokerId, topic, groupId + "-multi", expectedCount); start = System.currentTimeMillis(); multiThreadedConsumer.run(); System.out.println("Multi-threaded consumer costs " + (System.currentTimeMillis() - start)); } }
最后结果显示。单线程Consumer消费45000条消息共耗时232秒,而多线程Consumer耗时6.2秒,如下:
Single-threaded consumer costs 232336
Multi-threaded consumer costs 6246
显然,采用多线程Consumer的消费性能大约是单线程Consumer的37倍。当然实际的提升效果依具体环境而定。不过结论是肯定的,多线程Consumer在CPU核数很多且消息处理逻辑为I/O密集型操作的情形下会比单线程Consumer表现更好。