OpenCV 多通道图像混合


//-----------------------------------【头文件包含部分】---------------------------------------
//	描述:包含程序所依赖的头文件
//------------------------------------------------------------------------------------------------                                                                                     
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <iostream>

//-----------------------------------【命名空间声明部分】---------------------------------------
//	描述:包含程序所使用的命名空间
//-------------------------------------------------------------------------------------------------   
using namespace cv;
using namespace std;


//-----------------------------------【全局函数声明部分】--------------------------------------
//	描述:全局函数声明
//-----------------------------------------------------------------------------------------------
bool  MultiChannelBlending();

//-----------------------------------【main( )函数】------------------------------------------
//	描述:控制台应用程序的入口函数,我们的程序从这里开始
//-----------------------------------------------------------------------------------------------
int main()
{
    if (MultiChannelBlending())
    {
	cout << endl << "\n运行成功,得出了需要的图像~! ";
    }

    waitKey(0);
    return 0;
}

//-----------------------------【MultiChannelBlending( )函数】--------------------------------
//	描述:多通道混合的实现函数
//-----------------------------------------------------------------------------------------------
bool  MultiChannelBlending()
{
	//【0】定义相关变量
	Mat srcImage;
	Mat logoImage;
	vector<Mat> channels;
	Mat  imageBlueChannel;

	//=================【蓝色通道部分】=================
	//	描述:多通道混合-蓝色分量部分
	//============================================

	// 【1】读入图片
	logoImage = imread("dota_logo.jpg", 0);
	srcImage = imread("dota_jugg.jpg");

	if (!logoImage.data) { printf("Oh,no,读取logoImage错误~! \n"); return false; }
	if (!srcImage.data) { printf("Oh,no,读取srcImage错误~! \n"); return false; }

	//【2】把一个3通道图像转换成3个单通道图像
	split(srcImage, channels);//分离色彩通道

	//【3】将原图的蓝色通道引用返回给imageBlueChannel,注意是引用,相当于两者等价,修改其中一个另一个跟着变
	imageBlueChannel = channels.at(0);
	//【4】将原图的蓝色通道的(500,250)坐标处右下方的一块区域和logo图进行加权操作,将得到的混合结果存到imageBlueChannel中
	addWeighted(imageBlueChannel(Rect(500, 250, logoImage.cols, logoImage.rows)), 1.0,
		logoImage, 0.5, 0, imageBlueChannel(Rect(500, 250, logoImage.cols, logoImage.rows)));

	//【5】将三个单通道重新合并成一个三通道
	merge(channels, srcImage);

	//【6】显示效果图
	namedWindow(" <1>游戏原画+logo蓝色通道");
	imshow(" <1>游戏原画+logo蓝色通道", srcImage);


	//=================【绿色通道部分】=================
	//	描述:多通道混合-绿色分量部分
	//============================================

	//【0】定义相关变量
	Mat  imageGreenChannel;

	//【1】重新读入图片
	logoImage = imread("dota_logo.jpg", 0);
	srcImage = imread("dota_jugg.jpg");

	if (!logoImage.data) { printf("读取logoImage错误~! \n"); return false; }
	if (!srcImage.data) { printf("读取srcImage错误~! \n"); return false; }

	//【2】将一个三通道图像转换成三个单通道图像
	split(srcImage, channels);//分离色彩通道

	//【3】将原图的绿色通道的引用返回给imageBlueChannel,注意是引用,相当于两者等价,修改其中一个另一个跟着变
	imageGreenChannel = channels.at(1);
	//【4】将原图的绿色通道的(500,250)坐标处右下方的一块区域和logo图进行加权操作,将得到的混合结果存到imageGreenChannel中
	addWeighted(imageGreenChannel(Rect(500, 250, logoImage.cols, logoImage.rows)), 1.0,
		logoImage, 0.5, 0., imageGreenChannel(Rect(500, 250, logoImage.cols, logoImage.rows)));

	//【5】将三个独立的单通道重新合并成一个三通道
	merge(channels, srcImage);

	//【6】显示效果图
	namedWindow("<2>游戏原画+logo绿色通道");
	imshow("<2>游戏原画+logo绿色通道", srcImage);

	//=================【红色通道部分】=================
	//	描述:多通道混合-红色分量部分
	//============================================

	//【0】定义相关变量
	Mat  imageRedChannel;

	//【1】重新读入图片
	logoImage = imread("dota_logo.jpg", 0);
	srcImage = imread("dota_jugg.jpg");

	if (!logoImage.data) { printf("Oh,no,读取logoImage错误~! \n"); return false; }
	if (!srcImage.data) { printf("Oh,no,读取srcImage错误~! \n"); return false; }

	//【2】将一个三通道图像转换成三个单通道图像
	split(srcImage, channels);//分离色彩通道

	//【3】将原图的红色通道引用返回给imageBlueChannel,注意是引用,相当于两者等价,修改其中一个另一个跟着变
	imageRedChannel = channels.at(2);
	//【4】将原图的红色通道的(500,250)坐标处右下方的一块区域和logo图进行加权操作,将得到的混合结果存到imageRedChannel中
	addWeighted(imageRedChannel(Rect(500, 250, logoImage.cols, logoImage.rows)), 1.0,
		logoImage, 0.5, 0., imageRedChannel(Rect(500, 250, logoImage.cols, logoImage.rows)));

	//【5】将三个独立的单通道重新合并成一个三通道
	merge(channels, srcImage);

	//【6】显示效果图
	namedWindow("<3>游戏原画+logo红色通道 ");
	imshow("<3>游戏原画+logo红色通道 ", srcImage);

	return true;
}

运行:






参考:

《OpenCV3 编程入门》 毛星云 P127

posted @   double64  阅读(198)  评论(0编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· DeepSeek 开源周回顾「GitHub 热点速览」
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
点击右上角即可分享
微信分享提示