【计算机视觉】Object Proposal之BING理解
发现:
本论文主要有两大亮点。第一个亮点是发现了在固定窗口的大小下,物体与背景的梯度模式有所不同。如图1所示。图1(a)中绿框代表背景,红框代表物体。如果把这些框都resize成固定大小,比如8X8,然后求出8X8这些块中每个点的梯度(Normed Gradient,本文的结果为[0,255],之前看错成Normalized...估计这里的normed就是指窗口都resize成8X8),可以明显看到物体与背景的梯度模式的差别,如图1(c)所示,物体的梯度分布呈现出较为杂乱的模式,而背景的较为单一和清楚。其实这个道理很浅显,就是图像中背景区域往往呈现出homogeneous的特性,早期的图像区域分割方法就是依靠这种特性来做的。然后我个人觉得这里不一定要用梯度,用其他一些统计特征甚至是图像特征都有可能得到类似的结果。
找到上面的规律就好办了!
首先找一堆训练图像,(作者提供的图片集有许多,九千多张),每一个图片都有目标,并且目标所在的位置都在yml文件中标出来了,这样每一个图片有多个训练样本程序作者放到gtTrainBoxes和
gtTestBoxes(Ground truth bounding boxes for training and testing images)每个训练图像采集若干个窗口并resize到8X8的大小,然后将这些8X8的矩阵向量化得到若干个64维的向量,把这些向量扔进一个线性分类器去训练就ok了:
训练部分:采用级联的SVM 进行的训练。
作者分了两个阶段对训练样训练;
第一个阶段: