《数据挖掘导论》读书笔记(三)—— 探索数据
书名:数据挖掘导论(Introduction to Data Mining)
作者: Pang-Ning Tan / Michael Steinbach / Vipin Kumar
出版社: 人民邮电出版社
译者: 范明 / 范宏建
出版年: 2010-12-10
ISBN: 9787115241009
第3章 探索数据
鸢尾花数据集
- 数据来源
加州大学欧文分校(UCI)机器学习库鸢尾花数据集 - 数据介绍
包含150种鸢尾花信息,每50种取自三个鸢尾花品种之一:Setosa、Versicolour、Virginica。
花的特征有以下五种:- 萼片长度(厘米)
- 萼片宽度(厘米)
- 花瓣长度(厘米)
- 花瓣宽度(厘米)
- 类(Setosa、Versicolour、Virginica)
汇总统计
汇总统计(summary statistics)是量化的(如均值和标准差),用单个数或数的小集合表示可能很大的值集的各种特征。
频率和众数
考虑m个对象,这m个对象具有属性x,x的取值集合为{v1,...,vi,...,vk}。
则vi对应的频率: frequency(vi) = 具有属性vi的对象数/m
分类属性的众数(mode)是具有最高频率的值。
百分位数
对于有序数据,考虑值集的百分位数(percentile)更有意义。具体来说,给定一个有序的或连续的属性x和0与100之间的数p,属性x的第p个百分位数xp是一个x值,使得x的p%的观测值小于xp。
位置度量:均值和中位数
对于连续数据,两个使用最广泛的汇总统计是均值(mean)和中位数(median),它们是值集位置的度量。
考虑m个对象,这m个对象具有属性x,x的取值集合为{v1,...,vi,...,vk},且vi <= v(i+1),则
均值:
中位数:
概括地说,如果奇数个值,则中位数是中间值;如果有偶数个值,则中位数是中间两个值的平均值。
由于均值对离群值敏感,所以有时采用截断均值(trimmed mean)。指定0和100之间的百分位数p,丢弃高端和低端的(p/2)%的数据,然后用常规的方法计算均值。中位数就是p=100时的截断均值。
散布度量:极差和方差
度量数据的集中程度。
最简单的度量是极差(range)。给定属性x,它具有m个值{\(x_1\),..,\(x_m\)},则极差:
更常用的度量是方差(variance)和标准差(standard deviation)。方差记作\(s_x^{2}\),标准差是方差的平方根,记作\(s_x\)。标准差和x具有相同的单位。
注意,式(3-4)表示的是样本方差,注意与总体方差进行区别。
由于方差对离群值敏感,所以有时会用到以下三种度量。
绝对平均偏差(absolute average deviation, AAD):
中位数绝对偏差(median absolute deviation, MAD):
四分位数极差(interquartile range, IQR):
多元汇总统计
包含多个属性的数据的位置度量,可以通过分别计算每个属性的均值或中位数得到。
对于每个属性的散布情况,更多的使用协方差矩阵(covariance matrix)S表示,其中,S的第ij个元素\(s_{ij}\)是数据的第i个和第j个属性的协方差。这样,如果\(x_i\)和\(x_j\)分别是第i个和第j个属性,则:
而其中,
其中,\(x_{ki}\)和\(x_{kj}\)分别是第k个对象的第i和第j个属性的值。
协方差的值接近于0,表明两个变量不具有(线性)关系。
数据的相关性,可以用相关矩阵(correlation matrix)来度量。相关矩阵的第ij个元素是数据的第i和第j个属性之间的相关性。如果\(x_i\)和\(x_j\)分别是第i个和第j个属性,则:
其中\(s_i\)和\(s_j\)分别是\(x_i\)和\(x_j\)的方差。
可视化
动机
- 让人们能够快速吸取大量可视化信息,并发现其中的模式。
- 利用“锁在人脑袋中”的领域知识,用非可视化的方式分析,用可视化的方式提供结果,由领域专家进行评估。
一般概念
- 表示:将数据映射到图形元素
将数据对象、属性,数据对象之间的联系表示成诸如点、线、形状、颜色等图形元素。 - 安排
正确合理地安排各项元素。 - 选择
删除或不突出某些对象和属性。
技术
少量属性的可视化
- 茎叶图(stem and leaf plot)
- 直方图(histogram)
- 条形图(bar plot)
- 相对频率直方图(relative frequency histogram)
- Pareto直方图(Pareto histogram)
- 二维直方图(two-dimensional histogram)
- 盒状图(box plot)
- 饼图(pie chart)
可视化时间空间数据
- 等高线图(contour plot)
- 曲面图(surface plot)
- 矢量图(vector plot)
- 低维切片
- 动画
可视化高维数据
- 矩阵
- 平行坐标系(parallel coordinates)
- 星形坐标(star coordinates)
- Chernoff脸(Chernoff face)
注意事项
ACCENT原则:
- 理解(Apprehension)
正确察觉变量之间的关系。图形能够最大化对变量之间关系的理解吗? - 清晰性(Clarity)
以目视识别图形中所有元素。重要的元素或关系在视觉上最突出吗? - 一致性(Consistency)
根据以前的图形的相似性解释图形。元素、符号形状、颜色等与以前的图形使用的一致吗? - 有效性(Efficiency)
用尽可能简单的方法描绘复杂关系。图形元素的使用经济吗?图形容易解释吗? - 必要性(Necessity)
对图形和图形元素的需要。与其他替代方法(表、文本)相比,图形是提供数据的更有用形式吗?为了表示关系,所有的图形元素都是必要的吗? - 真实性(Truthfulness)
通过图形元素的大小,确定图形元素所代表的的真实值。图形元素可以准确地定位和定标吗?