AVL树及其实现

 引言
   平衡二叉树由于logN的时间效率,在排序和查找中有重要应用。

实现
 形态匀称的二叉树称为平衡二叉树 (Balanced binary tree) ,其严格定义是:
 一棵空树是平衡二叉树;若 T 是一棵非空二叉树,其左、右子树为 TL 和 TR ,令 hl 和 hr 分别为左、右子树的深度。当且仅当
   ①TL 、 TR 都是平衡二叉树;
   ② | hl - hr |≤ 1;
时,则 T 是平衡二叉树。

以下是它的c代码实现,具体思想参见<<数据结构>>(严蔚敏)一书。
#include <stdio.h>
#include 
<malloc.h>

#define LH  1 //左高
#define EH  0 //等高
#define RH  -1//右高 
#define TRUE 1
#define FALSE 0

typedef 
int ElemType;
typedef 
struct BSTNode
{
    ElemType key;
    
int bf;
    
struct BSTNode *lchild,*rchild;
}
BSTNode,*BSTree;  //平衡树的定义
//中序遍历
void InOrderTraverse(BSTree root)
{
    
if(root)
    
{
        InOrderTraverse(root
->lchild);
        printf(
"%d, ",root->key);
        InOrderTraverse(root
->rchild);
    }

}

//前序遍历
void PreOrderTraverse(BSTree root)
{
    
if(root)
    
{
        printf(
"%d, ",root->key);
        PreOrderTraverse(root
->lchild);
        PreOrderTraverse(root
->rchild);
    }

}

//右旋 如图1
void R_Rotate(BSTree &p)
{
    BSTree lc
=p->lchild;
    p
->lchild=lc->rchild;
    lc
->rchild=p;
    p
=lc;
}

//左旋
void L_Rotate(BSTree &p)
{
    BSTree rc
=p->rchild;
    p
->rchild=rc->lchild;
    rc
->lchild=p;
    p
=rc;
}

//左平衡处理
void LeftBalance(BSTree &T)
{
    BSTree lc
=T->lchild;
    
switch(lc->bf)
    
{
    
case LH:
        T
->bf=lc->bf=EH;
        R_Rotate(T);
        
break;
    
case RH:
        BSTree rd
=lc->rchild;
        
switch(rd->bf)
        
{
        
case LH:     //如图2所示
            T->bf=RH;
            lc
->bf=EH;
            
break;
        
case EH:
            T
->bf=lc->bf=EH;
            
break;
        
case RH:
            T
->bf=EH;
            lc
->bf=LH;
            
break;
        }

        rd
->bf=EH;
        L_Rotate(T
->lchild);//先左旋
        R_Rotate(T);//右旋
        break;
    }

}

//右平衡处理
void RightBalance(BSTree &T)
{
    BSTree rc
=T->rchild;
    
switch(rc->bf)
    
{
    
case RH:
        T
->bf=rc->bf=EH;
        L_Rotate(T);
        
break;
    
case LH:
        BSTree ld
=rc->lchild;
        
switch(ld->bf)
        
{
        
case RH:
            T
->bf=LH;
            rc
->bf=EH;
            
break;
        
case EH:
            T
->bf=rc->bf=EH;
            
break;
        
case LH:
            T
->bf=EH;
            rc
->bf=RH;
            
break;
        }

        ld
->bf=EH;
        R_Rotate(T
->rchild);
        L_Rotate(T);
        
break;
    }

}

//在平衡二叉排序树中插入一个结点
int InsertAVL(BSTree &t,ElemType e,bool &taller)
{
    
if(!t)
    
{
        t
=(BSTree)malloc(sizeof(BSTNode));
        t
->key=e;
        t
->lchild=t->rchild=NULL;
        t
->bf=EH;
        taller
=TRUE;
    }

    
else
    
{
        
if(e==t->key)
        
{
            taller
=FALSE;
            
return 0;
        }

        
if(e<t->key)
        
{
            
if(!InsertAVL(t->lchild,e,taller))
                
return 0;          //未插入
            if(taller)
            
{
                
switch(t->bf)
                
{
                
case LH:
                    LeftBalance(t);
                    taller
=FALSE;
                    
break;
                
case EH:
                    t
->bf=LH;
                    taller
=TRUE;
                    
break;
                
case RH:
                    t
->bf=EH;
                    taller
=FALSE;
                    
break;
                }

            }

        }

        
else
        
{
            
if(!InsertAVL(t->rchild,e,taller))
                
return 0;          //未插入
            if(taller)
            
{
                
switch(t->bf)
                
{
                
case RH:
                    RightBalance(t);
                    taller
=FALSE;
                    
break;
                
case EH:
                    t
->bf=RH;
                    taller
=TRUE;
                    
break;
                
case LH:
                    t
->bf=EH;
                    taller
=FALSE;
                    
break;
                }

            }

        }

    }

    
return 1;
}

//查找key,若没找到,则返回NULL
BSTree Search(BSTree t,ElemType key)
{
     BSTree p
=t;
     
while(p)
     
{
         
if(p->key==key)
             
return p;
         
else if(p->key<key)
             p
=p->rchild;
         
else
             p
=p->lchild;
     }

     
return p;
}

/**/
int main(int argc,char *argv[])
{
    BSTree root
=NULL,r;
    
bool taller=FALSE;
    
int array[]={13,24,37,90,53};
    
for(int i=0;i<5;i++)
        InsertAVL(root,array[i],taller);
    printf(
"inorder traverse\n");
    InOrderTraverse(root);

    printf(
"\npreorder traverse\n");
    PreOrderTraverse(root);

    printf(
"\nsearch key\n");
    r
=Search(root,37);
    
if(r)
    
{
        printf(
"%d\n",r->key);
    }

    
else
    
{
        printf(
"not find!\n");
    }

}


图1.


图2
输出结果如下:

posted @ 2008-04-13 21:20  YY哥  阅读(4420)  评论(3编辑  收藏  举报