相关系数

对于相关系数,我们从它的公式入手。一般情况下,相关系数的公式为:
\rho = \frac{Cov(X,Y}{\sigma_X\sigma_Y}ρ=σXσYCov(X,Y

相关系数也可以看成协方差:一种剔除了两个变量量纲影响、标准化后的特殊协方差。
既然是一种特殊的协方差,那它:

  1. 也可以反映两个变量变化时是同向还是反向,如果同向变化就为正,反向变化就为负。
  2. 由于它是标准化后的协方差,因此更重要的特性来了:它消除了两个变量变化幅度的影响,而只是单纯反应两个变量每单位变化时的相似程度。

比较抽象,下面还是举个例子来说明:
首先,还是承接上文中的变量X、Y变化的示意图(X为红点,Y为绿点),来看两种情况:

clipboard.png

很容易就可以看出以上两种情况X,Y都是同向变化的,而这个“同向变化”,有个非常显著特征:
X、Y同向变化的过程,具有极高的相似度!无论第一还是第二种情况下,都是:t1时刻X、Y都大于均值,t2时刻X、Y都变小且小于均值,t3时刻X、Y继续变小且小于均值,t4时刻X、Y变大但仍小于均值,t5时刻X、Y变大且大于均值……

可是,计算一下他们的协方差,

clipboard.png

协方差差出了一万倍,只能从两个协方差都是正数判断出两种情况下X、Y都是同向变化,但是,一点也看不出两种情况下X、Y的变化都具有相似性这一特点。
这是为什么呢?
因为以上两种情况下,在X、Y两个变量同向变化时,X变化的幅度不同,这样,两种情况的协方差更多的被变量的变化幅度所影响了。

所以,为了能准确的研究两个变量在变化过程中的相似程度,我们就要把变化幅度对协方差的影响,从协方差中剔除掉。于是,相关系数就横空出世了,就有了最开始相关系数的公式:
\rho = \frac{Cov(X,Y}{\sigma_X\sigma_Y}ρ=σXσYCov(X,Y
那么为什么要通过除以标准差的方式来剔除变化幅度的影响呢?咱们简单从标准差公式看一下:
\sigma_X=\sqrt{E((X-\mu_x)^2)}σX=E((Xμx)2)
从公式可以看出,标准差计算方法为,每一时刻变量值与变量均值之差再平方,求得一个数值,再将每一时刻这个数值相加后求平均,再开方。
“变量值与变量均值之差”X-mu _{x}是什么呢?就是偏离均值的幅度:

clipboard.png

那为何要对它做平方呢?因为有时候变量值与均值是反向偏离的(见下图),X-\mu _{x}Xμx是个负数,平方后,就可以把负号消除了。

这样在后面求平均时,每一项数值才不会被正负抵消掉,最后求出的平均值才能更好的体现出每次变化偏离均值的情况。

clipboard.png

当然,最后求出平均值后并没有结束,因为刚才为了消除负号,把X-\mu _{x}Xμx进行了平方,那最后肯定要把求出的均值开方,将这个偏离均值的幅度还原回原来的量级。于是就有了下面标准差的公式:

\sigma_X=\sqrt{E((X-\mu_x)^2)}σX=E((Xμx)2)

所以标准差描述了变量在整体变化过程中偏离均值的幅度。协方差除以标准差,也就是把协方差中变量变化幅度对协方差的影响剔除掉,这样协方差也就标准化了,它反应的就是两个变量每单位变化时的情况。这也就是相关系数的公式含义了。

同时,你可以反过来想象一下:既然相关系数是协方差除以标准差,那么,当X或Y的波动幅度变大的时候,它们的协方差会变大,标准差也会变大,这样相关系数的分子分母都变大,其实变大的趋势会被抵消掉,变小时也亦然。于是,很明显的,相关系数不像协方差一样可以在 +\infty 到-\infty∞ 间变化,它只能在+1到-1之间变化(相关系数的取值范围在+1到-1之间变化可以通过施瓦茨不等式来证明.

总结一下,对于两个变量X、Y:

  • 当他们的相关系数为1时,说明两个变量变化时的正向相似度最大,即,你变大一倍,我也变大一倍;你变小一倍,我也变小一倍。也即是完全正相关(以X、Y为横纵坐标轴,可以画出一条斜率为正数的直线,所以X、Y是线性关系的)
  • 随着他们相关系数减小,两个变量变化时的相似度也变小,当相关系数为0时,两个变量的变化过程没有任何相似度,也即两个变量无关。
  • 当相关系数继续变小,小于0时,两个变量开始出现反向的相似度,随着相关系数继续变小,反向相似度会逐渐变大。
  • 当相关系数为-1时,说明两个变量变化的反向相似度最大,即,你变大一倍,我变小一倍;你变小一倍,我变大一倍。也即是完全负相关(以X、Y为横纵坐标轴,可以画出一条斜率为负数的直线,所以X、Y也是线性关系的)。

有了上面的背景,我们再回到最初的变量X、Y的例子中,可以先看一下第一种情况的相关系数:

clipboard.png

说明第一种情况下,X的变化与Y的变化具有很高的相似度,而且已经接近完全正相关了,X、Y几乎就是线性变化的。

那第二种情况呢?

clipboard.png

说明第二种情况下,虽然X的变化幅度比第一种情况X的变化幅度小了10000倍,但是丝毫没有改变“X的变化与Y的变化具有很高的相似度”这一结论。同时,由于第一种、第二种情况的相关系数是相等的,因此在这两种情况下,X、Y的变化过程有着同样的相似度。

posted @ 2020-09-15 21:28  茶苦茶香工作室  阅读(3363)  评论(0编辑  收藏  举报