BloomFilter与redis联合去重的python的代码

我们在爬大型网站的时候,需要处理上千万乃至上亿的url的去重。如果采用python的自带set,或者redis的set,那就需要占用很大的内存。如果存入将url存入数据库去重,那速度又会变慢。这种量级以上的去重,一般是采用BloomFilter,但是如果机器down机了,那BloomFilter在内存的数据中的数据,就没了。我们知道redis的数据既可以存在内存中,也可以存在硬盘中。如果能将BloomFilter和redis结合起来,那就非常棒了。

# encoding=utf-8
 
import redis
from hashlib import md5
 
 
class SimpleHash(object):
    def __init__(self, cap, seed):
        self.cap = cap
        self.seed = seed
 
    def hash(self, value):
        ret = 0
        for i in range(len(value)):
            ret += self.seed * ret + ord(value[i])
        return (self.cap - 1) & ret
 
 
class BloomFilter(object):
    def __init__(self, host='localhost', port=6379, db=0, blockNum=1, key='bloomfilter'):
        """
        :param host: the host of Redis
        :param port: the port of Redis
        :param db: witch db in Redis
        :param blockNum: one blockNum for about 90,000,000; if you have more strings for filtering, increase it.
        :param key: the key's name in Redis
        """
        self.server = redis.Redis(host=host, port=port, db=db)
        # <<表示二进制向左移动位数,比如2<<2,2的二进制表示000010,向左移2位,就是001000,就是十进制的8
        self.bit_size = 1 <<31  # Redis的String类型最大容量为512M,现使用256M
        self.seeds = [5, 7, 11, 13, 31, 37, 61]
        self.key = key
        self.blockNum = blockNum
        self.hashfunc = []
        for seed in self.seeds:
            self.hashfunc.append(SimpleHash(self.bit_size, seed))
 
    def isContains(self, str_input):
        if not str_input:
            return False
        m5 = md5()
        m5.update(str_input)
        str_input = m5.hexdigest()
        ret = True
        name = self.key + str(int(str_input[0:2], 16) % self.blockNum)
        for f in self.hashfunc:
            loc = f.hash(str_input)
            ret = ret & self.server.getbit(name, loc)
        return ret
 
    def insert(self, str_input):
        m5 = md5()
        m5.update(str_input)
        str_input = m5.hexdigest()
        name = self.key + str(int(str_input[0:2], 16) % self.blockNum)
        for f in self.hashfunc:
            loc = f.hash(str_input)
            self.server.setbit(name, loc, 1)
 
 
if __name__ == '__main__':
    """ 第一次运行时会显示 not exists!,之后再运行会显示 exists! """
    bf = BloomFilter()
    if bf.isContains('http://www.baidu.com'):   # 判断字符串是否存在
        print 'exists!'
    else:
        print 'not exists!'
        bf.insert('http://www.baidu.com')

posted on 2022-04-10 09:31  帅胡  阅读(330)  评论(0编辑  收藏  举报

导航