剑指offer-第六章面试中的各项能力(圆圈中剩下的最后数字)

import java.util.ArrayList;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;

//圆圈中最后剩下的数字
//题目:0,1,2,……n-1,将这n个数排列成一个圆圈,从0开始,删除第m个数,最后一个剩下的数字是多少。
//思路1:我们首先可以把它当做一个环形链表。然后模拟一个环形链表。
/*思路2:根据数字的规律来求:        
 * 分析2:找规律。首先定义最初的n个数字(0,1,…,n-1)中最后剩下的数字是关于n和m的方程为f(n,m)。
 * 在这n个数字中,第一个被删除的数字是(m-1)%n,为简单起见记为k。
 * 那么删除k之后的剩下n-1的数字为0,1,…,k-1,k+1,…,n-1,并且下一个开始计数的数字是k+1。
 * 相当于在剩下的序列中,k+1排到最前面,从而形成序列k+1,…,n-1,0,…k-1。
 * 该序列最后剩下的数字也应该是关于n和m的函数。
 * 由于这个序列的规律和前面最初的序列不一样(最初的序列是从0开始的连续序列),
 * 因此该函数不同于前面函数,记为f’(n-1,m)。
 * 最初序列最后剩下的数字f(n,m)一定是剩下序列的最后剩下数字f’(n-1,m),所以f(n,m)=f’(n-1,m)。
 * 接下来我们把剩下的的这n-1个数字的序列k+1,…,n-1,0,…k-1作一个映射,
 * 映射的结果是形成一个从0到n-2的序列:

k+1    ->    0
k+2    ->    1
…
n-1    ->    n-k-2
0   ->    n-k-1
…
k-1   ->   n-2

    把映射定义为p,则p(x)= (x-k-1)%n,即如果映射前的数字是x,则映射后的数字是(x-k-1)%n。
    对应的逆映射是p-1(x)=(x+k+1)%n。由于映射之后的序列和最初的序列有同样的形式,都是从0开始的连续序列,
    因此仍然可以用函数f来表示,记为f(n-1,m)。根据我们的映射规则,
    映射之前的序列最后剩下的数字f’(n-1,m)= p-1 [f(n-1,m)]=[f(n-1,m)+k+1]%n。
    把k=m%n-1代入得到f(n,m)=f’(n-1,m)=[f(n-1,m)+m]%n。

    经过上面复杂的分析,我们终于找到一个递归的公式。
    要得到n个数字的序列的最后剩下的数字,只需要得到n-1个数字的序列的最后剩下的数字,并可以依此类推。
    当n=1时,也就是序列中开始只有一个数字0,那么很显然最后剩下的数字就是0。我们把这种关系表示为:

           0                            n=1
f(n,m)={
          [f(n-1,m)+m]%n     n>1

    尽管得到这个公式的分析过程非常复杂,但它用递归或者循环都很容易实现。
    最重要的是,这是一种时间复杂度为O(n),空间复杂度为O(1)的方法,
    因此无论在时间上还是空间上都优于前面的思路。*/
public class RemainLasting {
    //约瑟夫环问题,时间复杂度为O(mn),空间复杂度为O(n)
    public void deleteMLast(int n,int m){
        if(m<1||n<1)
            return;
        List<Integer> list=new ArrayList<Integer>();
        for(int i=0;i<n;i++)
            list.add(i);
        //从第K个开始计数
        int k=0;
        int last=0;
        while(list.size()>0){
            k=k+m;//表示第k个数
            k=k%list.size()-1;//表示第K个数的下标
            //判断K是否为最后一个数
            if(k<0){
                last=list.get(list.size()-1);
                list.remove(list.size()-1);
                k=0;
            }
            else{
            last=list.get(k);
            list.remove(k);
            }
            
        }
        System.out.println(last);
       
    }
    //时间复杂度为O(n),空间复杂度为O(1)
    public void lastRemaining(int n,int m){
        if(m<1||n<1)
            return ;
        int last=0;
        for(int i=2;i<=n;i++){
            last=(last+m)%i;
        }
        System.out.println(last);
    }
    public static void main(String[] args){
        RemainLasting rl=new RemainLasting();
        int n=5,m=3;
        rl.lastRemaining(n, m);
        rl.deleteMLast(n, m);
    }
}

 

posted @ 2015-08-31 17:21  lisahappy  阅读(291)  评论(0编辑  收藏  举报