第十天——闭包(一)


闭包

一.闭包

由于闭包这个概念比较难以理解,尤其是初学者来说,相对难以掌握,所以我们通过示例去理解学习闭包。

给大家提个需求,然后用函数去实现:完成一个计算不断增加的系列值的平均值的需求。

例如:整个历史中的某个商品的平均收盘价。什么叫平局收盘价呢?就是从这个商品一出现开始,每天记录当天价格,然后计算他的平均值:平均值要考虑直至目前为止所有的价格。

比如大众推出了一款新车:小白轿车。

第一天价格为:100000元,平均收盘价:100000元

第二天价格为:110000元,平均收盘价:(100000 + 110000)/2 元

第三天价格为:120000元,平均收盘价:(100000 + 110000 + 120000)/3 元

series = []
def make_averager(new_value):
    series.append(new_value)
    total = sum(series)
    return total / len(series)

print(make_averager(100000))
print(make_averager(110000))
print(make_averager(120000))

从上面的例子可以看出,基本上完成了我们的要求,但是这个代码相对来说是不安全的,因为你的这个series列表是一个全局变量,只要是全局作用域的任何地方,都可能对这个列表进行改变。

series = []
def make_averager(new_value):
    series.append(new_value)
    total = sum(series)
    return total / len(series)

print(make_averager(100000))
print(make_averager(110000))
series.append(666)  # 如果对数据进行相应改变,那么你的平均收盘价就会出现很大的问题。
print(make_averager(120000))

那么怎么办呢?有人说,你把他放在函数中不就行了,这样不就是局部变量了么?数据不就相对安全了么?

def make_averager(new_value):
    series = []
    series.append(new_value)
    total = sum(series)
    return total / len(series)


print(make_averager(100000))  # 100000.0
print(make_averager(110000))  # 110000.0
print(make_averager(120000))  # 120000.0

这样计算的结果是不正确的,那是因为执行函数,会开启一个临时的名称空间,随着函数的结束而消失,所以你每次执行函数的时候,都是重新创建这个列表,那么这怎么做呢?这种情况下,就需要用到我们讲的闭包了,我们用闭包的思想改一下这个代码。

def make_averager():

    series = []
    def averager(new_value):
        series.append(new_value)
        total = sum(series)
        return total/len(series)

    return averager

avg = make_averager()
print(avg(100000))
print(avg(110000))
print(avg(120000))

大家仔细看一下这个代码,我是在函数中嵌套了一个函数。那么avg 这个变量接收的实际是averager函数名,也就是其对应的内存地址,我执行了三次avg 也就是执行了三次averager这个函数。那么此时你们有什么问题?

肯定有学生就会问,那么我的make_averager这个函数只是执行了一次,为什么series这个列表没有消失?反而还可以被调用三次呢?这个就是最关键的地方,也是闭包的精华所在。我给大家说一下这个原理,以图为证:

在这里插入图片描述
上面被红色方框框起来的区域就是闭包,被蓝色圈起来的那个变量应该是make_averager()函数的局部变量,它应该是随着make_averager()函数的执行结束之后而消失。但是他没有,是因为此区域形成了闭包,series变量就变成了一个叫自由变量的东西,averager函数的作用域会延伸到包含自由变量series的绑定。也就是说,每次我调用avg对应的averager函数 时,都可以引用到这个自用变量series,这个就是闭包。

闭包的定义:

  1. 闭包是嵌套在函数中的函数

  2. 闭包必须是内层函数对外层函数的变量(非全局变量)的引用。

如何判断判断闭包?举例让同学回答:

# 例一:
def wrapper():
    a = 1
    def inner():
        print(a)
    return inner
ret = wrapper()

# 例二:
a = 2
def wrapper():
    def inner():
        print(a)
    return inner
ret = wrapper()


# 例三:

def wrapper(a,b):
    def inner():
        print(a)
        print(b)
    return inner
a = 2
b = 3
ret = wrapper(a,b)

以上三个例子,最难判断的是第三个,其实第三个也是闭包,如果我们每次去研究代码判断其是不是闭包,有一些不科学,或者过于麻烦了,那么有一些函数的属性是可以获取到此函数是否拥有自由变量的,如果此函数拥有自由变量,那么就可以侧面证明其是否是闭包函数了(了解):

def make_averager():

    series = []
    def averager(new_value):
        series.append(new_value)
        total = sum(series)
        return total/len(series)

    return averager
avg = make_averager()
# 函数名.__code__.co_freevars 查看函数的自由变量
print(avg.__code__.co_freevars)  # ('series',)
当然还有一些参数,仅供了解:

# 函数名.__code__.co_freevars 查看函数的自由变量
print(avg.__code__.co_freevars)  # ('series',)
# 函数名.__code__.co_varnames 查看函数的局部变量
print(avg.__code__.co_varnames)  # ('new_value', 'total')
# 函数名.__closure__ 获取具体的自由变量对象,也就是cell对象。
# (<cell at 0x0000020070CB7618: int object at 0x000000005CA08090>,)
# cell_contents 自由变量具体的值
print(avg.__closure__[0].cell_contents)  # []

闭包的作用:保存局部信息不被销毁,保证数据的安全性。

闭包的应用:

  1. 可以保存一些非全局变量但是不易被销毁、改变的数据。
  2. 装饰器。
posted @ 2020-06-13 13:12  知秋一叶9527  阅读(146)  评论(0编辑  收藏  举报