代码改变世界

机器学习中的几个常见概念(持续更新中......)

  猎手家园  阅读(578)  评论(0编辑  收藏  举报

1、学习率 Learning Rate:学习率决定了权值的更新速度,设置太大会使权值越过最优值,太小会使下降速度过慢,算法长时间不能收敛。靠人为干预调整参数需要不断的调整学习率。

2、梯度下降:一个广泛用来最小化模型误差的参数优化算法。梯度下降通过多次迭代,并在每一步中最小化成本函数来估计模型的参数(weight)。

3、signoid函数:是一个激活函数,当然还有relu/tash等。sigmoid的输出范围在[0, 1]之间,输出稳定,数据在传递过程中不容易扩散。缺点就是饱和的时候,梯度太小。

4、softmax函数:对于多层来讲,输出层就必须是softmax,他是sigmoid的推广。

5、随机森林算法及原理:
    随机森林通过反复二分数据进行分类和回归,使计算量大大降低。在变量(列)的使用和数据(行)的使用上随机化,生成很多分类树,再汇总分类的结果。
    随机森林是随机建立一个森林,森林里面有由很多决策树组成,各个决策树之间没有任何影响。
    实现过程:
    <1>原始训练集N,利用bootstrap法有放回的随机抽取样本k。
    <2>设有m个变量,每次在节点处随机选择n个变量,然后在m中选择一个具有分类能力的变量,变量的阈值通过检查每一个分类点确定。
    <3>每一棵树最大限度的生长,不做任何修剪。
    <4>将生成的多棵分类树组成的随机森林,用随机森林分类器对新的数据进行判别和分类,分类的结果按分类器的投票多少而定。

6、逻辑回归算法及原理

编辑推荐:
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
阅读排行:
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构
· 字符编码:从基础到乱码解决
· 提示词工程——AI应用必不可少的技术
历史上的今天:
2016-05-25 数据分析与挖掘 - R语言:多元线性回归
2016-05-25 大数据工具比较:R 语言和 Spark 谁更胜一筹?
2016-05-25 数据分析与挖掘 - R语言:贝叶斯分类算法(案例三)
2016-05-25 数据分析与挖掘 - R语言:贝叶斯分类算法(案例二)
2016-05-25 数据分析与挖掘 - R语言:贝叶斯分类算法(案例一)
2016-05-25 数据分析与挖掘 - R语言:KNN算法
点击右上角即可分享
微信分享提示