利用TensorFlow实现多元线性回归
2017-05-12 11:19 猎手家园 阅读(3336) 评论(0) 编辑 收藏 举报利用TensorFlow实现多元线性回归,代码如下:
# -*- coding:utf-8 -*- import tensorflow as tf import numpy as np from sklearn import linear_model from sklearn import preprocessing # Read x and y x_data = np.loadtxt("ex3x.dat").astype(np.float32) y_data = np.loadtxt("ex3y.dat").astype(np.float32) # We evaluate the x and y by sklearn to get a sense of the coefficients. reg = linear_model.LinearRegression() reg.fit(x_data, y_data) print ("Coefficients of sklearn: K=%s, b=%f" % (reg.coef_, reg.intercept_)) # Now we use tensorflow to get similar results. # Before we put the x_data into tensorflow, we need to standardize it # in order to achieve better performance in gradient descent; # If not standardized, the convergency speed could not be tolearated. # Reason: If a feature has a variance that is orders of magnitude larger than others, # it might dominate the objective function # and make the estimator unable to learn from other features correctly as expected. scaler = preprocessing.StandardScaler().fit(x_data) print (scaler.mean_, scaler.scale_) x_data_standard = scaler.transform(x_data) W = tf.Variable(tf.zeros([2, 1])) b = tf.Variable(tf.zeros([1, 1])) y = tf.matmul(x_data_standard, W) + b loss = tf.reduce_mean(tf.square(y - y_data.reshape(-1, 1)))/2 optimizer = tf.train.GradientDescentOptimizer(0.3) train = optimizer.minimize(loss) init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) for step in range(100): sess.run(train) if step % 10 == 0: print (step, sess.run(W).flatten(), sess.run(b).flatten()) print ("Coefficients of tensorflow (input should be standardized): K=%s, b=%s" % (sess.run(W).flatten(), sess.run(b).flatten())) print ("Coefficients of tensorflow (raw input): K=%s, b=%s" % (sess.run(W).flatten() / scaler.scale_, sess.run(b).flatten() - np.dot(scaler.mean_ / scaler.scale_, sess.run(W))))
数据集下载:下载地址
欢迎关注我的公众号:云栖语,不一样的研发视界。

云栖语微信公众号:change-1978
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构
· 字符编码:从基础到乱码解决
· 提示词工程——AI应用必不可少的技术
2016-05-12 如何使用Hive&R从Hadoop集群中提取数据进行分析
2016-05-12 CentOS6.5下实现R绘图