[Usaco2007 Open]Fliptile 翻格子游戏
题目描述
Farmer John knows that an intellectually satisfied cow is a happy cow who will give more milk. He has arranged a brainy activity for cows in which they manipulate an M x N grid (1 <= M <= 15; 1 <= N <= 15) of square tiles, each of which is colored black on one side and white on the other side. As one would guess, when a single white tile is flipped, it changes to black; when a single black tile is flipped, it changes to white. The cows are rewarded when they flip the tiles so that each tile has the white side face up. However, the cows have rather large hooves and when they try to flip a certain tile, they also flip all the adjacent tiles (tiles that share a full edge with the flipped tile). Since the flips are tiring, the cows want to minimize the number of flips they have to make. Help the cows determine the minimum number of flips required, and the locations to flip to achieve that minimum. If there are multiple ways to achieve the task with the minimum amount of flips, return the one with the least lexicographical ordering in the output when considered as a string. If the task is impossible, print one line with the word "IMPOSSIBLE".
输入
* Line 1: Two space-separated integers: M and N
* Lines 2..M+1: Line i+1 describes the colors (left to right) of row i of the grid with N space-separated integers which are 1 for black and 0 for white
输出
* Lines 1..M: Each line contains N space-separated integers, each specifying how many times to flip that particular location.
样例输入
4 4
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1
样例输出
0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 OUTPUT DETAILS: After flipping at row 2 column 1, the board will look like: 0 0 0 1 1 0 1 0 1 1 1 0 1 0 0 1 After flipping at row 2 column 4, the board will look like: 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 After flipping at row 3 column 1, the board will look like: 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 After flipping at row 3 column 4, the board will look like: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Another solution might be: 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0but this solution is lexicographically higher than the solution above.
对于每一个点,翻转次数只能是0和1,多余的操作步数没有意义,枚举第一行的翻转状态,由第一行求下面每一行的状态,对于一个点,该点的初始状态加上该点四周的翻转状态等于偶数,则翻转后状态是0,由这条性质求下面m-1行,求出第m行后,判断第m行的状态是否合法,因为第一行的状态枚举是按照字典序,所以找到合法方案直接break输出
#include<iostream> #include<cstdio> #include<cstring> using namespace std; int m,n; int a[25][25]; int now[25][25]={0}; void pre(int x) { for(int j=1;j<=m;j++) if((1<<j-1)&x) now[1][j]=1; else now[1][j]=0; } void turn(int x,int n) { int s[30]={0}; int num=0; while(x){ s[++num]=x%2; x/=2; } for(int i=n;i>num;i--) cout<<"0"; for(int i=num;i>=1;i--) cout<<s[i]; cout<<endl; } int main() { //freopen("in.txt","r",stdin); //freopen("fliptile.in","r",stdin); // freopen("fliptile.out","w",stdout); scanf("%d%d",&n,&m); for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) scanf("%d",&a[i][j]); if(n==1&&m==1){ if(a[1][1]==1) printf("1\n"); else printf("0\n"); return 0; } bool op=1; int t=0; for(int i=0;i<(1<<m);i++){ memset(now,0,sizeof(now)); pre(i); for(int j=2;j<=n;j++) for(int k=1;k<=m;k++){ t=a[j-1][k]+now[j-1][k]+now[j-1][k-1]+now[j-1][k+1]; if(j>=3) t+=now[j-2][k]; if(t&1) now[j][k]=1; else now[j][k]=0; } op=1; for(int k=1;k<=m;k++){ t=a[n][k]+now[n][k]+now[n-1][k]+now[n][k-1]+now[n][k+1]; if(t&1) {op=0;break;} } if(op==1) break; } if(op==1) { for(int i=1;i<=n;i++){ for(int j=1;j<=m;j++) printf("%d ",now[i][j]); printf("\n"); } } else printf("IMPOSSIBLE\n"); //while(1); return 0; }