Redis 字典

字典

字典,是一种保存键值对(key-value)的抽象数据结构。

在字典中一个key 是独一无二的,并且和一个值(value)进行关联。

字典经常作为数据结构内置在高级编程语言中,比如python,但是Redis是用c编写的,c本身并没有内置字典这个数据结构。因此Redis构建了自己的字典。

字典在Redis应用很广泛,我们知道Redis其实就是一个key-value数据库,所以对Redis数据的增删改查都是利用字典结构。

Redis字典

Redis字典用哈希表作为底层实现,一个哈希表可以有多个哈希节点,每一个哈希节点保存了字典中的一个键值对。

哈希表

Redis 字典所使用的哈希表由 dict.h/dictht 结构定义:

typedef struct dictht {

    // 哈希表数组
    dictEntry **table;

    // 哈希表大小
    unsigned long size;

    // 哈希表大小掩码,用于计算索引值
    // 总是等于 size - 1
    unsigned long sizemask;

    // 该哈希表已有节点的数量
    unsigned long used;

} dictht;

  

  • table 属性是一个数组, 数组中的每个元素都是一个指向 dict.h/dictEntry 结构的指针, 每个 dictEntry 结构保存着一个键值对。
  • size 属性记录了哈希表的大小, 也即是 table 数组的大小, 而 used 属性则记录了哈希表目前已有节点(键值对)的数量。
  • sizemask 属性的值总是等于 size-1 , 这个属性和哈希值一起决定一个键应该被放到 table 数组的哪个索引上面。

 

哈希表节点

哈希表节点使用 dictEntry 结构表示, 每个 dictEntry 结构都保存着一个键值对:

typedef struct dictEntry {

    //
    void *key;

    //
    union {
        void *val;
        uint64_t u64;
        int64_t s64;
    } v;

    // 指向下个哈希表节点,形成链表
    struct dictEntry *next;

} dictEntry;
  • key 属性保存着键值对中的键, 而 v 属性则保存着键值对中的值, 其中键值对的值可以是一个指针, 或者是一个 uint64_t 整数, 又或者是一个 int64_t 整数。
  • next 属性是指向另一个哈希表节点的指针, 这个指针可以将多个哈希值相同的键值对连接在一次, 以此来解决键冲突(collision)的问题。

字典

Redis 中的字典由 dict.h/dict 结构表示:

typedef struct dict {

    // 类型特定函数
    dictType *type;

    // 私有数据
    void *privdata;

    // 哈希表
    dictht ht[2];

    // rehash 索引
    // 当 rehash 不在进行时,值为 -1
    int rehashidx; /* rehashing not in progress if rehashidx == -1 */

} dict;

type 属性和 privdata 属性是针对不同类型的键值对, 为创建多态字典而设置的:

  • type 属性是一个指向 dictType 结构的指针, 每个 dictType 结构保存了一簇用于操作特定类型键值对的函数, Redis 会为用途不同的字典设置不同的类型特定函数。
  • 而 privdata 属性则保存了需要传给那些类型特定函数的可选参数。

 

typedef struct dictType {

    // 计算哈希值的函数
    unsigned int (*hashFunction)(const void *key);

    // 复制键的函数
    void *(*keyDup)(void *privdata, const void *key);

    // 复制值的函数
    void *(*valDup)(void *privdata, const void *obj);

    // 对比键的函数
    int (*keyCompare)(void *privdata, const void *key1, const void *key2);

    // 销毁键的函数
    void (*keyDestructor)(void *privdata, void *key);

    // 销毁值的函数
    void (*valDestructor)(void *privdata, void *obj);

} dictType;

ht 属性是一个包含两个项的数组, 数组中的每个项都是一个 dictht 哈希表, 一般情况下, 字典只使用 ht[0] 哈希表, ht[1] 哈希表只会在对 ht[0] 哈希表进行 rehash 时使用。

除了 ht[1] 之外, 另一个和 rehash 有关的属性就是 rehashidx : 它记录了 rehash 目前的进度, 如果目前没有在进行 rehash , 那么它的值为 -1 。

整个字典的结构可以用下图表示:

 

 哈希算法

要将一个键值对添加到字典里面,需要先将建的哈希值和索引算出来,再将包含键值对的哈希表节点放到哈希表数组的指定索引上面。

计算哈希值:

hash = dict->type->hashFunction(key);

计算索引:

#使用哈希表的sizemask属性(size-1)、ht[x](可以是ht[0]或者ht[1])
#计算出索引
index = hash & dict->ht[x].sizemask;

解决建冲突

上述哈希算法算出来的索引值可能会相等,这个现象称为键冲突(collision)

Redis 的哈希表使用链地址法解决键冲突,Redis 哈希表节点用next 属性,将哈希值一样的键值对链接再一起构成链表。

rehash

随着操作的不断执行, 哈希表保存的键值对会逐渐地增多或者减少, 为了让哈希表的负载因子维持在一个合理的范围之内

当哈希表保存的键值对数量太多或者太少时, 程序需要对哈希表的大小进行相应的扩展或者收缩。

扩展和收缩哈希表的工作可以通过执行 rehash (重新散列)操作来完成, Redis 对字典的哈希表执行 rehash 的步骤如下:

  1. 为字典的 ht[1] 哈希表分配空间, 这个哈希表的空间大小取决于要执行的操作, 以及 ht[0] 当前包含的键值对数量 (也即是 ht[0].used 属性的值):
    • 如果执行的是扩展操作, 那么 ht[1] 的大小为 第一个 >=  ht[0].used 2 的 2^n (2 的 n 次方幂);
    • 如果执行的是收缩操作, 那么 ht[1] 的大小为第一个 >= ht[0].used 的 2^n 。
  1. 将保存在 ht[0] 中的所有键值对 rehash 到 ht[1] 上面: rehash 指的是重新计算键的哈希值和索引值, 然后将键值对放置到 ht[1] 哈希表的指定位置上。
  2. 当 ht[0] 包含的所有键值对都迁移到了 ht[1] 之后 (ht[0] 变为空表), 释放 ht[0] , 将 ht[1] 设置为 ht[0] , 并在 ht[1] 新创建一个空白哈希表, 为下一次 rehash 做准备。

哈希表的扩展与收缩

当以下条件中的任意一个被满足时, 程序会自动开始对哈希表执行扩展操作:

  1. 服务器目前没有在执行 BGSAVE 命令或者 BGREWRITEAOF 命令, 并且哈希表的负载因子大于等于 1 ;
  2. 服务器目前正在执行 BGSAVE 命令或者 BGREWRITEAOF 命令, 并且哈希表的负载因子大于等于 5 ;

其中哈希表的负载因子可以通过公式:

#负载因子 = 哈希表已经保存的节点数 / 哈希表大小
load_factor = ht[0].used / ht[0].size

上述两个条件反过来,执行收缩操作。

参考文献

redis设计与实现第二版

https://jiajunhuang.com/tutorial/data_structure/dict.md

posted @ 2020-11-03 23:12  hulunbao  阅读(86)  评论(0编辑  收藏  举报