算法详解之最近公共祖先(LCA)

1|0概念

首先是最近公共祖先的概念(什么是最近公共祖先?):

在一棵没有环的树上,每个节点肯定有其父亲节点和祖先节点,而最近公共祖先,就是两个节点在这棵树上深度最大的公共的祖先节点。

换句话说,就是两个点在这棵树上距离最近的公共祖先节点。

所以LCA主要是用来处理当两个点仅有唯一一条确定的最短路径时的路径。

有人可能会问:那他本身或者其父亲节点是否可以作为祖先节点呢?

答案是肯定的,很简单,按照人的亲戚观念来说,你的父亲也是你的祖先,而LCA还可以将自己视为祖先节点。

举个例子吧,如下图所示4和5的最近公共祖先是2,5和3的最近公共祖先是1,2和1的最近公共祖先是1。 

404

这就是最近公共祖先的基本概念了,那么我们该如何去求这个最近公共祖先呢?

通常初学者都会想到最简单粗暴的一个办法:对于每个询问,遍历所有的点,时间复杂度为O(nq) ,很明显,nq一般不会很小。

怎么办办?

LCA其实有很多种解法,这里介绍几个

2|0一、Tarjan

什么是Tarjan(离线)算法呢?顾名思义,就是在一次遍历中把所有询问一次性解决,所以其时间复杂度是O(n+q)

Tarjan算法的优点在于相对稳定,时间复杂度也比较居中,也很容易理解。

下面详细介绍一下Tarjan算法的基本思路:

  1. 任选一个点为根节点,从根节点开始。

  2. 遍历该点u所有子节点v,并标记这些子节点v已被访问过。

  3. 若是v还有子节点,返回2,否则下一步。

  4. 合并vu上。

  5. 寻找与当前点u有询问关系的点v

  6. 若是v已经被访问过了,则可以确认uv的最近公共祖先为v被合并到的父亲节点a

遍历的话需要用到dfs来遍历(相信来看的人都懂吧...),至于合并,最优化的方式就是利用并查集来合并两个节点。

  • 伪代码
Tarjan(u)//marge和find为并查集合并函数和查找函数 { for each(u,v) //访问所有u子节点v { Tarjan(v); //继续往下遍历 marge(u,v); //合并v到u上 标记v被访问过; } for each(u,e) //访问所有和u有询问关系的e { 如果e被访问过; u,e的最近公共祖先为find(e); } }

个人感觉这样还是有很多人不太理解,所以打算模拟一遍给大家看。

假设我们有一组数据 9个节点 8条边 联通情况如下:

1--2,1--3,2--4,2--5,3--6,5--7,5--8,7--9 即下图所示的树

设我们要查找最近公共祖先的点为9--8,4--6,7--5,5--3;

f[]数组为并查集的父亲节点数组,初始化f[i]=ivis[]数组为是否访问过的数组,初始为0; 

404

下面开始模拟过程

取1为根节点往下搜索发现有两个儿子2和3;

先搜2,发现2有两个儿子4和5,先搜索4,发现4没有子节点,则寻找与其有关系的点;

发现6与4有关系,但是vis[6]=0,即6还没被搜过,所以不操作

发现没有和4有询问关系的点了,返回此前一次搜索,更新vis[4]=1

404

表示4已经被搜完,更新f[4]=2,继续搜5,发现5有两个儿子7和8;

先搜7,发现7有一个子节点9,搜索9,发现没有子节点,寻找与其有关系的点

发现8和9有关系,但是vis[8]=0,即8没被搜到过,所以不操作

发现没有和9有询问关系的点了,返回此前一次搜索,更新vis[9]=1;

表示9已经被搜完,更新f[9]=7,发现7没有没被搜过的子节点了,寻找与其有关系的点;

发现5和7有关系,但是vis[5]=0,所以不操作

发现没有和7有关系的点了,返回此前一次搜索,更新vis[7]=1

404

表示7已经被搜完,更新f[7]=5,继续搜8,发现8没有子节点,则寻找与其有关系的点;

发现9与8有关系,此时vis[9]=1,则他们的最近公共祖先find(9)=5

(find(9)的顺序为f[9]=7-->f[7]=5-->f[5]=5 return 5;)

发现没有与8有关系的点了,返回此前一次搜索,更新vis[8]=1

表示8已经被搜完,更新f[8]=5,发现5没有没搜过的子节点了,寻找与其有关系的点;

404

发现7和5有关系,此时vis[7]=1,所以他们的最近公共祖先find(7)=5

(find(7)的顺序为f[7]=5-->f[5]=5 return 5;)

又发现5和3有关系,但是vis[3]=0,所以不操作,此时5的子节点全部搜完了;

返回此前一次搜索,更新vis[5]=1,表示5已经被搜完,更新f[5]=2

发现2没有未被搜完的子节点,寻找与其有关系的点;

又发现没有和2有关系的点,则此前一次搜索,更新vis[2]=1

404

表示2已经被搜完,更新f[2]=1,继续搜3,发现3有一个子节点6;

搜索6,发现6没有子节点,则寻找与6有关系的点,发现4和6有关系

此时vis[4]=1,所以它们的最近公共祖先find(4)=1;

(find(4)的顺序为f[4]=2-->f[2]=2-->f[1]=1 return 1;)

发现没有与6有关系的点了,返回此前一次搜索,更新vis[6]=1,表示6已经被搜完了;

404

更新f[6]=3,发现3没有没被搜过的子节点了,则寻找与3有关系的点;

发现5和3有关系,此时vis[5]=1,则它们的最近公共祖先find(5)=1

(find(5)的顺序为f[5]=2-->f[2]=1-->f[1]=1 return 1;)

发现没有和3有关系的点了,返回此前一次搜索,更新vis[3]=

404

更新f[3]=1,发现1没有被搜过的子节点也没有有关系的点,此时可以退出整个dfs了。

经过这次dfs我们得出了所有的答案,有没有觉得很神奇呢?是否对Tarjan算法有更深层次的理解了呢?

3|0二、倍增LCA

404

何为倍增?

所谓倍增,就是按2的倍数来增大,也就是跳 1,2,4,8,16,32 不过在这我们不是按从小到大跳,而是从大向小跳,即按32,16,8,4,2,1来跳,如果大的跳不过去,再把它调小。这是因为从小开始跳,可能会出现“悔棋”的现象。拿 5 为例,从小向大跳,51+2+4,所以我们还要回溯一步,然后才能得出5=1+4;而从大向小跳,直接可以得出5=4+1。这也可以拿二进制为例,5(101),从高位向低位填很简单,如果填了这位之后比原数大了,那我就不填,这个过程是很好操作的。

这里以编号为17和18结点为例

17>3

18>5>3

可以看出向上跳的次数大大减小。这个算法的时间复杂度为O(nlogn),已经可以满足大部分的需求。

想要实现这个算法,首先我们要记录各个点的深度和他们2i级的的祖先,用数组deep表示每个节点的深度,fa[i][j]表示节点i2j级祖先。 代码如下:

inline void getdeep(int now,int father)//now表示当前节点,father表示它的父亲节点 { deep[now]=deep[father]+1; fa[now][0]=father; for(int i=1;(1<<i)<=deep[now];i++) fa[now][i]=fa[fa[now][i-1]][i-1];//这个转移可以说是算法的核心之一 //意思是f的2^i祖先等于f的2^(i-1)祖先的2^(i-1)祖先 //2^i=2^(i-1)+2^(i-1) for(int i=head[now];i;i=edge[i].next)//注意:尽量用链式前向星来存边,速度会大大提升 { if(edge[i].to==father)continue; getdeep(edge[i].to,now); } }

然后我们要算出log2n

log2n=log(n)/log(2)+0.5;

接下来就是倍增LCA了,我们先把两个点提到同一高度,再统一开始跳

但我们在跳的时候不能直接跳到它们的LCA,因为这可能会误判,比如48,在跳的时候,我们可能会认为1是它们的LCA,但1只是它们的祖先,它们的LCA其实是3。所以我们要跳到它们LCA的下面一层,比如48,我们就跳到45,然后输出它们的父节点,这样就不会误判了。

inline int lca(int u,int v) { int deepu=deep[u],deepv=deep[v]; if(deepu!=deepv)//先跳到同一深度 { if(deep[u]<deep[v]) { swap(u,v); swap(deepu,deepv); } int d=deepu-deepv; for(int i=0;i<=log2n;i++) if((1<<i)&d)u=fa[u][i]; } if(u==v)return u; for(int i=log2n;i>=0;i--) { if(deep[fa[u][i]]<=0)continue; if(fa[u][i]==fa[v][i])continue; else u=fa[u][i],v=fa[v][i];//因为我们要跳到它们LCA的下面一层,所以它们肯定不相等,如果不相等就跳过去。 } return fa[u][0]; }

完整的求17和18的LCA的路径:

17>10>7>3

18>16>8>5>3

解释:首先,18要跳到和17深度相同,然后1817一起向上跳,一直跳到LCA的下一层(177185),此时LCA就是它们的父亲

总体来说就是这样了;

参考博文:https://www.cnblogs.com/jvxie/p/4854719.html

参考博文:https://www.luogu.org/blog/morslin/solution-p3379


__EOF__

本文作者Hulean
本文链接https://www.cnblogs.com/hulean/p/11144059.html
关于博主:评论和私信会在第一时间回复。或者直接私信我。
版权声明:本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!
声援博主:如果您觉得文章对您有帮助,可以点击文章右下角推荐一下。您的鼓励是博主的最大动力!
posted @   hulean  阅读(28913)  评论(3编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· DeepSeek 开源周回顾「GitHub 热点速览」
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
点击右上角即可分享
微信分享提示