LoKwongho

mm

笔记 Bioinformatics Algorithms Chapter2

Chapter2 WHICH DNA PATTERNS PLAY THE ROLE OF MOLECULAR CLOCKS 

寻找模序 

一、

转录因子会结合基因上游的特定序列,调控基因的转录表达,但是在不同个体中,这个序列会有一些差别。本章讲述用贪婪、随机算法来寻找这个序列:寻找模序。

(NF-κB binding sites from the Drosophila melanogaster genome)

二、一些概念:

1. Score、Profile 的含义如图

根据profile matrix 可以计算出某个kmer在某一profile下的概率

三、

提出问题:Motif Finding Problem:

Given a collection of strings, find a set of k-mers, one from each string, that minimizes the score of the resulting motif.

Input: A collection of strings Dna and an integer k.

Output: A collection Motifs of k-mers, one from each string in Dna, minimizing Score(Motifs) among all possible choices of k-mers.

一组序列中,寻找一组k-mer,它们的Score是最低的(或者与consensus sequence的海明距离之和最小)

 

1 遍历

MedianString(Dna, k)
        distance ← ∞
        for each k-mer Pattern from AA…AA to TT…TT
            if distance > d(Pattern, Dna)
                 distance ← d(Pattern, Dna)
                 Median ← Pattern
        return Median

 

2 贪婪法 GreedyMotifSearch

GREEDYMOTIFSEARCH(Dna, k, t)
        BestMotifs ← motif matrix formed by first k-mers in each string
                      from Dna
        for each k-mer Motif in the first string from Dna
            Motif1 ← Motif
            for i = 2 to t
                form Profile from motifs Motif1, …, Motifi - 1
                Motifi ← Profile-most probable k-mer in the i-th string
                          in Dna
            Motifs ← (Motif1, …, Motift)
            if Score(Motifs) < Score(BestMotifs)
                BestMotifs ← Motifs
        output BestMotifs

详解 http://www.mrgraeme.co.uk/greedy-motif-search/

 

*贪婪法 GreedyMotifSearch with pseudocounts

pseudocounts:在形成profile matrix时,给0项设为一个较小的值

GreedyMotifSearch(Dna, k, t)
        form a set of k-mers BestMotifs by selecting 1st k-mers in each string from Dna
        for each k-mer Motif in the first string from Dna
            Motif1 ← Motif
            for i = 2 to t
                apply Laplace's Rule of Succession to form Profile from motifs   Motif1, …, Motifi-1
                Motifi ← Profile-most probable k-mer in the i-th string in Dna
            Motifs ← (Motif1, …, Motift)
            if Score(Motifs) < Score(BestMotifs)
                BestMotifs ← Motifs
        output BestMotifs

 

3. 随机法Randomized Motif Search

RandomizedMotifSearch(Dna, k, t)
     #随机从每个DNA取k-mer,生成一组motifs randomly select k-mers Motifs = (Motif1, …, Motift) in each string from Dna BestMotifs ← Motifs while forever Profile ← Profile(Motifs)#根据motifs形成Profile矩阵 Motifs ← Motifs(Profile, Dna) #根据profile矩阵从一组DNA生成一组几率最大的motifs if Score(Motifs) < Score(BestMotifs) BestMotifs ← Motifs else return BestMotifs

随机算法起到作用的原因是,随机选取的一组Motifs,有可能选到潜在正确的一个k-mer,那么就在这中形成倾斜,直至寻找到较优解

改进: 上一个算法,每次迭代都重新随机生成一组新的Motifs,这可能把潜在的正确模序抛弃了,改进的方法是每次随机只更改一行k-mer

GibbsSampler(Dna, k, t, N)
        randomly select k-mers Motifs = (Motif1, …, Motift) in each string from Dna
        BestMotifs ← Motifs
        for j ← 1 to N
            i ← Random(t)
            Profile ← profile matrix constructed from all strings in Motifs except for Motif[i]
            Motif[i] ← Profile-randomly generated k-mer in the i-th sequence
            if Score(Motifs) < Score(BestMotifs)
                BestMotifs ← Motifs
        return BestMotifs

 

posted on 2018-09-21 00:20  iojafekniewg  阅读(637)  评论(0编辑  收藏  举报

导航

My Email guangho2743##foxmail.com : )