Python基础(九)-面向对象二

一、静态属性,类方法,静态方法

1.1、静态属性

未使用静态属性之前:

class Room:
    def __init__(self,name,owner,width,length,heigh):
        self.name=name
        self.owner=owner
        self.width=width
        self.length=length
        self.heigh=heigh

    def cal_area(self):
        print('%s 住的 %s 总面积是%s' % (self.owner,self.name, self.width * self.length))
        # return  self.width * self.length

r1 = Room("room01","小二",10,10,10)
r1.cal_area()  #小二 住的 room01 总面积是100

@property ==>使用静态属性

class Room:
    def __init__(self,name,owner,width,length,heigh):
        self.name=name
        self.owner=owner
        self.width=width
        self.length=length
        self.heigh=heigh

    @property  #使用静态属性
    def cal_area(self):
        # print('%s 住的 %s 总面积是%s' % (self.owner,self.name, self.width * self.length)) #TypeError: 'NoneType' object is not callable
        return  self.width * self.length

r1 = Room("room01","小二",10,10,10)
print(r1.cal_area)  #100  ==>调用方式发生了改变
print(r1.width)   #10

1.2、类方法

当我们不想进行实例化,而需要直接获取类的属性时,可以使用类方法@classmethod

class Room:
    tag=1
    def __init__(self,name,owner,width,length,heigh):
        self.name=name
        self.owner=owner
        self.width=width
        self.length=length
        self.heigh=heigh

    @property
    def cal_area(self):
        # print('%s 住的 %s 总面积是%s' % (self.owner,self.name, self.width * self.length))
        return  self.width * self.length

    def test(self):
        print('from test',self.name)

    @classmethod  #类方法
    def tell_info(cls,x):
        print(cls)
        print('--》',cls.tag,x)  #print('--》',Room.tag)
    # def tell_info(self):
    #     print('---->',self.tag)

print(Room.tag)  #1
Room.tell_info(10)   #--》 1 10    #不需要进行实例化而直接获取类的属性

1.3、静态方法

类的工具包@staticmethod

class Room:
    tag=1
    def __init__(self,name,owner,width,length,heigh):
        self.name=name
        self.owner=owner
        self.width=width
        self.length=length
        self.heigh=heigh

    @property
    def cal_area(self):
        # print('%s 住的 %s 总面积是%s' % (self.owner,self.name, self.width * self.length))
        return  self.width * self.length

    @classmethod
    def tell_info(cls,x):
        print(cls)
        print('--》',cls.tag,x)#print('--》',Room.tag)
    # def tell_info(self):
    #     print('---->',self.tag)

    @staticmethod  #类的工具包,不与类绑定,也不与实例绑定
    def wash_body(a,b,c):  #可以不传参
        print('%s %s %s正在洗澡' %(a,b,c))

    def test(x,y):
        print(x,y)


print(Room.__dict__)   #==>'wash_body': <staticmethod object at 0x000002BFB0BB4630>
r1=Room('room12','alex',100,100,100000)
print(r1.__dict__)    #{'width': 100, 'heigh': 100000, 'length': 100, 'name': 'room12', 'owner': 'alex'}

二、组合

定义一个人的类,人有头,躯干,手,脚等数据属性,这几个属性有可以是通过一个类实例化的对象,这就是组合

组合的用途:①做关联②小的组成大的

class Hand:
    pass

class Foot:
    pass

class Trunk:
    pass

class Head:
    pass

class Person:
    def __init__(self,id_num,name):
        self.id_num=id_num
        self.name=name
        self.hand=Hand()
        self.foot=Foot()
        self.trunk=Trunk()
        self.head=Head()
p1=Person('111111','AAA')
print(p1.__dict__)
#{'name': 'AAA', 'foot': <__main__.Foot object at 0x00000273D44547B8>, 'id_num': '111111', 'trunk': <__main__.Trunk object at 0x00000273D44547F0>, 'hand': <__main__.Hand object at 0x00000273D4454780>, 'head': <__main__.Head object at 0x00000273D4454828>}

不建议使用的方式:

class School:
    def __init__(self,name,addr):
        self.name=name
        self.addr=addr
        self.course_list=[]   #定义列表
    def zhao_sheng(self):
        print('%s 正在招生' %self.name)
class Course:
    def __init__(self,name,price,period):
        self.name=name
        self.price=price
        self.period=period

s1=School('oldboy','北京')
s2=School('oldboy','南京')
s3=School('oldboy','东京')

c1=Course('linux',10,'1h')
c2=Course('python',10,'1h')

s1.course_list.append(c1)
s1.course_list.append(c2)
print(s1.__dict__)

for course_obj in s1.course_list:
    print(course_obj.name,course_obj.price)

三、继承

3.1、初识继承

继承是一种创建新类的方式,新建的类可以继承一个或多个父类(python支持多继承),父类又可称为基类或超类,新建的类称为派生类或子类。

python中类的继承分为:单继承和多继承

class ParentClass1: #定义父类
    pass

class ParentClass2: #定义父类
    pass

class SubClass1(ParentClass1): #单继承,基类是ParentClass1,派生类是SubClass
    pass

class SubClass2(ParentClass1,ParentClass2): #python支持多继承,用逗号分隔开多个继承的类
    pass

查看继承:

>>> SubClass1.__bases__ #__base__只查看从左到右继承的第一个子类,__bases__则是查看所有继承的父类
(<class '__main__.ParentClass1'>,)
>>> SubClass2.__bases__
(<class '__main__.ParentClass1'>, <class '__main__.ParentClass2'>)

经典类与新式类:

1.只有在python2中才分新式类和经典类,python3中统一都是新式类
2.在python2中,没有显式的继承object类的类,以及该类的子类,都是经典类
3.在python2中,显式地声明继承object的类,以及该类的子类,都是新式类
3.在python3中,无论是否继承object,都默认继承object,即python3中所有类均为新式类

提示:如果没有指定基类,python的类会默认继承object类,object是所有python类的基类,它提供了一些常见方法(如__str__)的实现。

>>> ParentClass1.__bases__
(<class 'object'>,)
>>> ParentClass2.__bases__
(<class 'object'>,)

3.2、重用性

#继承的代码实现
class Animal:

    def eat(self):
        print("%s 吃 " %self.name)

    def drink(self):
        print ("%s 喝 " %self.name)

    def shit(self):
        print ("%s 拉 " %self.name)

    def pee(self):
        print ("%s 撒 " %self.name)


class Cat(Animal):

    def __init__(self, name):
        self.name = name
        self.breed = '猫'

    def cry(self):
        print('喵喵叫')

class Dog(Animal):

    def __init__(self, name):
        self.name = name
        self.breed='狗'

    def cry(self):
        print('汪汪叫')

注意:

class Foo:
    def f1(self):
        print('Foo.f1')

    def f2(self):
        print('Foo.f2')
        self.f1()

class Bar(Foo):
    def f1(self):
        print('Foo.f1')

b=Bar()
b.f2()

#Foo.f2
#Foo.f1

3.3、接口与归一化设计

抽象类

#一切皆文件
import abc #利用abc模块实现抽象类

class All_file(metaclass=abc.ABCMeta):
    all_type='file'
    @abc.abstractmethod #定义抽象方法,无需实现功能
    def read(self):
        '子类必须定义读功能'
        pass

    @abc.abstractmethod #定义抽象方法,无需实现功能
    def write(self):
        '子类必须定义写功能'
        pass

# class Txt(All_file):
#     pass
#
# t1=Txt() #报错,子类没有定义抽象方法

class Txt(All_file): #子类继承抽象类,但是必须定义read和write方法
    def read(self):
        print('文本数据的读取方法')

    def write(self):
        print('文本数据的读取方法')

class Sata(All_file): #子类继承抽象类,但是必须定义read和write方法
    def read(self):
        print('硬盘数据的读取方法')

    def write(self):
        print('硬盘数据的读取方法')

class Process(All_file): #子类继承抽象类,但是必须定义read和write方法
    def read(self):
        print('进程数据的读取方法')

    def write(self):
        print('进程数据的读取方法')

wenbenwenjian=Txt()

yingpanwenjian=Sata()

jinchengwenjian=Process()

#这样大家都是被归一化了,也就是一切皆文件的思想
wenbenwenjian.read()
yingpanwenjian.write()
jinchengwenjian.read()

print(wenbenwenjian.all_type)
print(yingpanwenjian.all_type)
print(jinchengwenjian.all_type)

3.4、继承的顺序

class A(object):
    def test(self):
        print('from A')

class B(A):
    def test(self):
        print('from B')

class C(A):
    def test(self):
        print('from C')

class D(B):
    def test(self):
        print('from D')

class E(C):
    def test(self):
        print('from E')

class F(D,E):
    # def test(self):
    #     print('from F')
    pass
f1=F()
f1.test()
print(F.__mro__) #只有新式才有这个属性可以查看线性列表,经典类没有这个属性

#新式类继承顺序:F->D->B->E->C->A
#经典类继承顺序:F->D->B->A->E->C
#python3中统一都是新式类
#pyhon2中才分新式类与经典类

继承顺序原理

#定义的每一个类,python会计算出一个方法解析顺序(MRO)列表,这个MRO列表就是一个简单的所有基类的线性顺序列表

>>> F.mro() #等同于F.__mro__
[<class '__main__.F'>, <class '__main__.D'>, <class '__main__.B'>, <class '__main__.E'>, <class '__main__.C'>, <class '__main__.A'>, <class 'object'>]

准则

1.子类会先于父类被检查
2.多个父类会根据它们在列表中的顺序被检查
3.如果对下一个类存在两个合法的选择,选择第一个父类

3.5、子类调用父类的方法

3.5.1、方式一

父类名.父类方法()

class Vehicle:
    country = "China"
    def __init__(self,name,speed,load,power):
        self.name = name
        self.speed = speed
        self.load = load
        self.power = power

    def run(self):
        print("开动啦")

class Subway(Vehicle):
    def __init__(self,name,speed,load,power,line):
        Vehicle.__init__(self,name,speed,load,power)
        self.line = line

    def run(self):
        print("地铁%s号线欢迎您" %self.line)
        Vehicle.run(self)

line13 = Subway("中国地铁","180m/s","50人/箱","电",13)
line13.run()

3.5.2、方法二:super()

class Vehicle1:
    Country='China'
    def __init__(self,name,speed,load,power):
        self.name=name
        self.speed=speed
        self.load=load
        self.power=power
    def run(self):
        print('开动啦')
        print('开动啦')
class Subway(Vehicle1):
        def __init__(self,name,speed,load,power,line):
           # Vehicle.__init__(self,name,speed,load,power)
           # super().__init__(name,speed,load,power)  #super(__class__,self).__init__(name,speed,load,power)
           super(Subway,self).__init__(name,speed,load,power)
           self.line=line
        def show_info(self):
            print(self.name,self.speed,self.load,self.power,self.line)
        def run(self):
            # Vehicle.run(self)
            super().run()
            print('%s %s 线,开动啦' %(self.name,self.line))
line13=Subway('北京地铁','10km/s',1000000000,'电',13)
line13.show_info()
line13.run()

print(line13.__class__)  #<class '__main__.Subway'>

四、多态

多态指的是一类事物有多种形态,多态指出了如何通过他们共同的属性和动作来操作及访问,而不需要考虑他们集体的类

动物有多种形态:人,狗,猪

import abc
class Animal(metaclass=abc.ABCMeta): #同一类事物:动物
    @abc.abstractmethod
    def talk(self):
        pass

class People(Animal): #动物的形态之一:人
    def talk(self):
        print('say hello')

class Dog(Animal): #动物的形态之二:狗
    def talk(self):
        print('say wangwang')

class Pig(Animal): #动物的形态之三:猪
    def talk(self):
        print('say aoao')
class H2O:
    def __init__(self,name,temperature):
        self.name=name
        self.temperature=temperature
    def turn_ice(self):
        if self.temperature < 0:
            print('[%s]温度太低结冰了' %self.name)
        elif self.temperature > 0 and self.temperature < 100:
            print('[%s]液化成水' %self.name)
        elif self.temperature > 100:
            print('[%s]温度太高变成了水蒸气' %self.name)

class Water(H2O):
    pass
class Ice(H2O):
    pass
class Steam(H2O):
    pass

w1=Water('水',25)
i1=Ice('冰',-20)
s1=Steam('蒸汽',3000)

五、封装

5.1、隐藏约定

在python中使用双下划綫开头的方式将属性隐藏起来(设置成私有的)

类中所有双下划线开头的名称如__x都会在类定义时自动变形成:_类名__x的形式

#其实这仅仅这是一种变形操作且仅仅只在类定义阶段发生变形
#类中所有双下划线开头的名称如__x都会在类定义时自动变形成:_类名__x的形式:

class A:
    __N=0 #类的数据属性就应该是共享的,但是语法上是可以把类的数据属性设置成私有的如__N,会变形为_A__N
    def __init__(self):
        self.__X=10 #变形为self._A__X
    def __foo(self): #变形为_A__foo
        print('from A')
    def bar(self):
        self.__foo() #只有在类内部才可以通过__foo的形式访问到.

#A._A__N是可以访问到的,
#这种,在外部是无法通过__x这个名字访问到。

注意

1)这种机制也并没有真正意义上限制我们从外部直接访问属性,知道了类名和属性名就可以拼出名字:_类名__属性,然后就可以访问了,如a._A__N,即这种操作并不是严格意义上的限制外部访问,仅仅只是一种语法意义上的变形,主要用来限制外部的直接访问

2)变形的过程只在类的定义时发生一次,在定义后的赋值操作,不会变形

3)在继承中,父类如果不想让子类覆盖自己的方法,可以将方法定义为私有的

#正常情况
>>> class A:
...     def fa(self):
...         print('from A')
...     def test(self):
...         self.fa()
... 
>>> class B(A):
...     def fa(self):
...         print('from B')
... 
>>> b=B()
>>> b.test()
from B
 

#把fa定义成私有的,即__fa
>>> class A:
...     def __fa(self): #在定义时就变形为_A__fa
...         print('from A')
...     def test(self):
...         self.__fa() #只会与自己所在的类为准,即调用_A__fa
... 
>>> class B(A):
...     def __fa(self):
...         print('from B')
... 
>>> b=B()
>>> b.test()
from A

5.2、封装的含义

封装的真谛在于明确地区分内外,封装的属性可以直接在内部使用,而不能被外部直接使用,然而定义属性的目的终归是要用,外部要想用类隐藏的属性,需要我们为其开辟接口

1)封装数据:隐藏起来然后对外提供操作该数据的接口,然后我们可以在接口附加上对该数据操作的限制,以此完成对数据属性操作的严格控制

class Teacher:
    def __init__(self,name,age):
        # self.__name=name
        # self.__age=age
        self.set_info(name,age)

    def tell_info(self):
        print('姓名:%s,年龄:%s' %(self.__name,self.__age))
    def set_info(self,name,age):
        if not isinstance(name,str):
            raise TypeError('姓名必须是字符串类型')
        if not isinstance(age,int):
            raise TypeError('年龄必须是整型')
        self.__name=name
        self.__age=age


t=Teacher('egon',18)
t.tell_info()

t.set_info('egon',19)
t.tell_info()

2)封装方法:目的是隔离复杂性,可以对外提供接口函数

#取款是功能,而这个功能有很多功能组成:插卡、密码认证、输入金额、打印账单、取钱
#对使用者来说,只需要知道取款这个功能即可,其余功能我们都可以隐藏起来,很明显这么做
#隔离了复杂度,同时也提升了安全性

class ATM:
    def __card(self):
        print('插卡')
    def __auth(self):
        print('用户认证')
    def __input(self):
        print('输入取款金额')
    def __print_bill(self):
        print('打印账单')
    def __take_money(self):
        print('取款')

    def withdraw(self):
        self.__card()
        self.__auth()
        self.__input()
        self.__print_bill()
        self.__take_money()

a=ATM()
a.withdraw()

5.3、特性property

5.3.1、property含义

  property是一种特殊的属性,访问它时会执行一段功能(函数)然后返回值

示例:

class People:
    def __init__(self,name,weight,height):
        self.name=name
        self.weight=weight
        self.height=height
    @property
    def bmi(self):
        return self.weight / (self.height**2)

p1=People('egon',75,1.85)
print(p1.bmi)

#++++++++++++++++++++++++++++++++++++++++++++++++++
import math
class Circle:
    def __init__(self,radius): #圆的半径radius
        self.radius=radius

    @property
    def area(self):
        return math.pi * self.radius**2 #计算面积

    @property
    def perimeter(self):
        return 2*math.pi*self.radius #计算周长

c=Circle(10)
print(c.radius)
print(c.area) #可以向访问数据属性一样去访问area,会触发一个函数的执行,动态计算出一个值
print(c.perimeter) #同上
'''
输出结果:
314.1592653589793
62.83185307179586
'''

#注意:此时的特性arear和perimeter不能被赋值
c.area=3 #为特性area赋值
'''
抛出异常:
AttributeError: can't set attribute
'''

5.3.2、为什么要使用property

将一个类的函数定义成特性以后,对象再去使用的时候obj.name,根本无法察觉自己的name是执行了一个函数然后计算出来的,这种特性的使用方式遵循了统一访问的原则

5.4、封装与扩展性

封装在于明确区分内外,使得类实现者可以修改封装内的东西而不影响外部调用者的代码;而外部使用用者只知道一个接口(函数),只要接口(函数)名、参数不变,使用者的代码永远无需改变。这就提供一个良好的合作基础——或者说,只要接口这个基础约定不变,则代码改变不足为虑。

#类的设计者
class Room:
    def __init__(self,name,owner,width,length,high):
        self.name=name
        self.owner=owner
        self.__width=width
        self.__length=length
        self.__high=high
    def tell_area(self): #对外提供的接口,隐藏了内部的实现细节,此时我们想求的是面积
        return self.__width * self.__length


#使用者
>>> r1=Room('卧室','egon',20,20,20)
>>> r1.tell_area() #使用者调用接口tell_area


#类的设计者,轻松的扩展了功能,而类的使用者完全不需要改变自己的代码
class Room:
    def __init__(self,name,owner,width,length,high):
        self.name=name
        self.owner=owner
        self.__width=width
        self.__length=length
        self.__high=high
    def tell_area(self): #对外提供的接口,隐藏内部实现,此时我们想求的是体积,内部逻辑变了,只需求修该下列一行就可以很简答的实现,而且外部调用感知不到,仍然使用该方法,但是功能已经变了
        return self.__width * self.__length * self.__high


#对于仍然在使用tell_area接口的人来说,根本无需改动自己的代码,就可以用上新功能
>>> r1.tell_area()
posted @ 2019-09-08 17:12  运维人在路上  阅读(267)  评论(0编辑  收藏  举报