爬虫综合大作业
一.设置合理的user-agent,模拟成真实的浏览器去提取内容
# 设置合理的user-agent,爬取数据函数 def getData(url): headers = [ { 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.140 Safari/537.36', 'Cookie': '_lxsdk_cuid=16a8d7b1613c8-0a2b4d109e58f-b781636-144000-16a8d7b1613c8; _lx_utm=utm_source%3DBaidu%26utm_medium%3Dorganic; uuid_n_v=v1; iuuid=1BB9A320700C11E995DE7D45B75E59C6FC50A50D996543D0819E9EB2E6507E92; webp=true; ci=20%2C%E5%B9%BF%E5%B7%9E; selectci=; __mta=45946523.1557151818494.1557367174996.1557368154367.23; _lxsdk=1BB9A320700C11E995DE7D45B75E59C6FC50A50D996543D0819E9EB2E6507E92; __mta=45946523.1557151818494.1557368154367.1557368240554.24; from=canary; _lxsdk_s=16a9a2807fa-ea7-e79-c55%7C%7C199'}, { 'User-Agent': 'Mozilla / 5.0(Linux;Android 6.0; Nexus 5 Build / MRA58N) AppleWebKit / 537.36(KHTML, like Gecko) Chrome / 73.0 .3683.103Mobile Safari / 537.36', 'Cookie': '_lxsdk_cuid=16a8d7b1613c8-0a2b4d109e58f-b781636-144000-16a8d7b1613c8; _lx_utm=utm_source%3DBaidu%26utm_medium%3Dorganic; uuid_n_v=v1; iuuid=1BB9A320700C11E995DE7D45B75E59C6FC50A50D996543D0819E9EB2E6507E92; webp=true; ci=20%2C%E5%B9%BF%E5%B7%9E; selectci=; __mta=45946523.1557151818494.1557367174996.1557368154367.23; _lxsdk=1BB9A320700C11E995DE7D45B75E59C6FC50A50D996543D0819E9EB2E6507E92; __mta=45946523.1557151818494.1557368154367.1557368240554.24; from=canary; _lxsdk_s=16a9a2807fa-ea7-e79-c55%7C%7C199'}, { 'User-Agent': 'Mozilla/5.0 (X11; U; Linux x86_64; zh-CN; rv:1.9.2.10) Gecko/20100922 Ubuntu/10.10 (maverick) Firefox/3.6.10', 'Cookie': '_lxsdk_cuid=16a8d7b1613c8-0a2b4d109e58f-b781636-144000-16a8d7b1613c8; _lx_utm=utm_source%3DBaidu%26utm_medium%3Dorganic; uuid_n_v=v1; iuuid=1BB9A320700C11E995DE7D45B75E59C6FC50A50D996543D0819E9EB2E6507E92; webp=true; ci=20%2C%E5%B9%BF%E5%B7%9E; selectci=; __mta=45946523.1557151818494.1557367174996.1557368154367.23; _lxsdk=1BB9A320700C11E995DE7D45B75E59C6FC50A50D996543D0819E9EB2E6507E92; __mta=45946523.1557151818494.1557368154367.1557368240554.24; from=canary; _lxsdk_s=16a9a2807fa-ea7-e79-c55%7C%7C199'} ] get = requests.get(url, headers=headers[random.randint(0, 2)]); get.encoding = 'utf-8' return get
二、对爬取的数据进行处理,生成
# 数据处理函数 def dataProcess(data): data = json.loads(data.text)['cmts'] allData = [] for i in data: dataList = {} dataList['id'] = i['id'] dataList['nickName'] = i['nickName'] dataList['cityName'] = i['cityName'] if 'cityName' in i else '' # 处理cityName不存在的情况 dataList['content'] = i['content'].replace('\n', ' ', 10) # 处理评论内容换行的情况 dataList['score'] = i['score'] dataList['startTime'] = i['startTime'] if "gender" in i: dataList['gendar'] = i["gender"] else: dataList['gendar'] = i["gender"] = 0 allData.append(dataList) return allData
三、把爬取的数据生成csv文件和保存到数据库。
# 处理后的数据保存为csv文件 pd.Series(allData) newsdf = pd.DataFrame(allData) newsdf.to_csv('hjl.csv', encoding='utf-8')
四、数据可视化分析。
# 评论者评分等级环状饼图 def scoreProcess(score): from pyecharts import Pie list_num = [] list_num.append(scores.count(0)) list_num.append(scores.count(0.5)) list_num.append(scores.count(1)) list_num.append(scores.count(1.5)) list_num.append(scores.count(2)) list_num.append(scores.count(2.5)) list_num.append(scores.count(3)) list_num.append(scores.count(3.5)) list_num.append(scores.count(4)) list_num.append(scores.count(4.5)) list_num.append(scores.count(5)) attr = ["0", "0.5", "1","1.5","2","2.5", "3", "3.5","4","4.5","5"] pie = Pie("评分等级环状饼图",title_pos="center") pie.add("", attr, list_num, is_label_show=True, label_text_color=None, radius=[40, 75], legend_orient="vertical", legend_pos="left", legend_top="100px", center=[50,60] ) pie.render("score_pie.html")
性别饼图