算法导论 第六章 堆排序
算法导论第六章 堆排序
一 概念
1.(二叉)堆是数据结构的一种数组对象(堆是数组而不是一般的树)
2.但它可以视为一棵完全二叉树,二叉树的层次遍历对就数组元素的顺序对应,树根对应A[1],
对于第i个元素,有以下主要关系:
PARENT(i) return i/2 // its parent
LEFT(i) return 2*i // its left child
RIGHT(i) return 2*i+1
3.最大堆(根结点最大):
A[PARENT(i)] >= A[i]; // 父结点不小于子结点
最小堆:
A[PARENT(i)] <= A[i]; // 父结点不大于子结点
4.堆的高度:
从本结点到叶子结点的最长简单下降路径上边的数目,定义堆的高度为树根的高度,叶子结点高度为0,对于n个结点的堆,高度为 floor(lgn)即lgn向下取整数
二。堆的数据结构
1. A[N]: 堆数组
length[A]: 数组中元素的个数
heap-size[A]: 存放在A中的堆的元素个数
2. 操作:
(1)MAX—HEAPIFY(A,i)过程O(lgn),保持最大堆性质的关键
(2)BUILD—MAX—HEAP 过程O(n),构造最大堆
(3)HEAPSORT 运行时间O(n*lgn),对数组进行排序
(4)堆运用于优先级队列:
MAX-HEAP-INSERT(A, val) // insert a element to A
HEAP-EXTRACT-MAX(A) // remove and return the max element of A
HEAP-INCREASE-KEY(A, i, ival) // increase the ith element's val to ival
MAXIMUM(A) // return the element which has the greatest val
三,程序实现
#include <stdio.h> #include <stdlib.h> #define PARENT(i) (i) >> 1 // parent of i #define LEFT(i) (i) << 1 // left child of i #define RIGHT(i) ((i)<<1) + 1 // right child of i #define MINVAL (signed)(1 << 31) static int heap_size = 0; static int length = 0; /* * 以LEFT(i)和RIGHT(i)为根的两棵二叉树都是已建好的最大堆 * 但A[i]可能小于其孩子,此时对其"下降"调整使满足最大堆性质 * recusion Version */ void max_heapify(int *heap, int i) { int l, r, largest; l = LEFT(i); r = RIGHT(i); if (l <= heap_size && heap[l] > heap[i]) largest = l; else largest = i; if (r <= heap_size && heap[r] > heap[largest]) largest = r; if (largest != i) { // need to be adjusted int t = heap[i]; heap[i] = heap[largest]; heap[largest] = t; max_heapify(heap, largest); } } /* not recursion version */ void max_heapify02(int *heap, int i) { int l, r, largest; int t; while (1) { l = LEFT(i); r = RIGHT(i); if (l <= heap_size && heap[l] > heap[i]) largest = l; else largest = i; if (r <= heap_size && heap[r] > heap[largest]) largest = r; if (largest != i) { t = heap[largest]; heap[largest] = heap[i]; heap[i] = t; i = largest; } else break; } } void build_max_heap(int *heap) { int i; for (i = heap_size / 2; i >= 1; i--) max_heapify(heap, i); } void heapsort(int *heap) { int i, t; build_max_heap(heap); for (i = length; i >= 2; i--) { t = heap[i]; heap[i] = heap[1]; heap[1] = t; heap_size--; max_heapify(heap, 1); } heap_size = length; } int heap_maximum(int *heap) { return heap[1]; } int heap_extract_max(int *heap) { int max; if (heap_size < 1) { fprintf(stderr, "heap underflow\n"); exit(0); } max = heap[1]; heap[1] = heap[heap_size]; heap_size--; max_heapify(heap, 1); return max; } /* the key must not less then the original val heap[i] */ void heap_increase_key(int *heap, int i, int key) { int t; if (i < 1 || i > heap_size) { fprintf(stderr, "invalid position of %d\n", i); exit(-1); } if (key < heap[i]) { fprintf(stderr, "new key is smaller than current key\n"); exit(-1); } while (i > 1 && key > heap[PARENT(i)]) { heap[i] = heap[PARENT(i)]; i = PARENT(i); } heap[i] = key; } void max_heap_insert(int *heap, int key) { heap_size++; heap[heap_size] = MINVAL; heap_increase_key(heap, heap_size, key); } void print_heap(int *heap) { int i; for (i = 1; i <= heap_size; i++) printf("%3d ", heap[i]);
printf("\n"); } int main() { //int arr[] = { 0, 10, 9, 2, 100, 300, 56, 67, 3, 2, 2, 20, 10 }; int arr[] = { 0, 100, 2, 20, 10 }; int i, x; length = sizeof(arr) / sizeof(*arr) - 1; heap_size = length; printf("original array:\n"); print_heap(arr); build_max_heap(arr); printf("max heap:\n"); print_heap(arr); /* printf("after sorted:\n"); heapsort(arr); print_heap(arr); */ printf("after extract max:\n"); heap_extract_max(arr); print_heap(arr); x = 33; printf("insert %d to the heap:\n", x); max_heap_insert(arr, x); print_heap(arr); return 0; }
四,部分习题解答:
6.1-1: 2^(h+1) 2^h
6.1-2: 含n个元素的堆的高度为 lgn 取下整数
1+2+4+...+2^(h-1) < n <= 1+2+4+..2^h
(1-2^h)/(1-2) < n <= (1-2^(h+1))/(1-2)
2^h-1 < n <= 2^(h+1)-1 --> 2^h <= n < 2^(h+1)
--> h <= lgn < h+1 --> h = floor(lgn)
6.1-3: 由堆的定义可得
6.1-4:叶子结点
6.1-5: No
6.1-6:no
6.1-7: 最后一个结点n的父结点为n/2,其父结点之后为叶子结点
6.2-2:minmum heap
MIN-HEAPIFY(A, i)
l = LEFT(i)
r = RIGHT(i)
if l <= heap-size[A] and A[l] < A[i]
smallest = l;
else
smallest = i;
if r <= heap-size[A] and A[r] < A[smallest]
smallest = r
if smallest != i
A[i] <-> A[smallest]
MIN-HEAPIFY(A, smallest)
6.2-3:
程序执行一次测试立刻退出,不改变堆
6.2-4:
一次测试后立刻退出,堆不变
6.2-5:
见上面代码 not recursion ersion
6.2-6:
一直不知道证明???
6.3-2:
从下至上建堆,可以利用建好的堆调用MAX-HEAPIFY
6.3-3:
n <= 2^(h+1)
第0层最多 2^h
第1层最多 2^(h-1)
...
第h层(根层) 1 >= n / (2^(h+1))
6.5-7:
因为insert程序调用HEAP—INCREASE—KEY(),而increase函数要求插入的key大于原来的值,所以先把原来的值设为最小值。
6.5-8:
见堆排序k路合并
思考题
6-1: 用插入法建堆 BUILD-MAX-HEAP02(A) heap-size[A] = 1 for i = 2 to length[A] MAX-HEAP-INSERT(A, A[i]) MAX-HEAP-INSERT(A, A[i]) 同上 a) 不一样 A = { 1, 2, 3 } 6-2: d叉堆的分析 d叉堆与二叉堆类似,只是其中每一个非叶子结点有d个子女 PARENT(i) = (i-2)/d + 1 LEFTMOST(i) = d*(i-1) + 2 //RIGHTMOST(i) = d*i+1 CHILD(i, j) = d * (i-1) + j + 1 a) 根结点为A[1],根结点的孩子为A[2],A[3]...A[d+1] b) lgn / lgd c) O(lgn/lgd * d) EXTRACT-MAX(A) max = A[1] A[1] = A[heap-size[A]] heap-size[A] = heap-size[A]-1 MAX-HEAPIFY(A, 1) 其中: MAX-HEAPIFY(A, i) l = LEFTMOST(i) r = RIGHTMOST(i) largest = i; while (l <= r && l <= heap-size[A]) if (A[l] > A[largest]) largest = l l <- l+1 if largest != i A[i] <-> A[largest] MAX-HEAPIFY(A, largest) d) lgn / lgd MAX-HEAP-INSERT(A, key) heap-size[A] <- heap-size[A] + 1 A[heap-size[A]] <- 无穷小 HEAP-INCREASE-KEY(A, heap-size[A], key) e) lgn / lg d HEAP-INCREASE-KEY(A, i, key) //if key < A[i] // then error "new key is samller than current key" // A[i] <- key //while i > 1 and A[PARENT(i)] < A[i] // do exchange A[i] <-> A[PARENT(i)] // i <- PARENT(i) key <- MAX(A[i], key) while i > 1 and A[PARENT(i)] < key do A[i] <- A[PARENT(i)] i = PARENT(i) A[i] = key