算法导论 第六章 堆排序

算法导论第六章  堆排序
一 概念
1.(二叉)堆是数据结构的一种数组对象(堆是数组而不是一般的树)
2.但它可以视为一棵完全二叉树,二叉树的层次遍历对就数组元素的顺序对应,树根对应A[1],
  对于第i个元素,有以下主要关系:
 PARENT(i)  return i/2    // its parent
 LEFT(i)  return 2*i    // its left child
 RIGHT(i) return 2*i+1
3.最大堆(根结点最大):
  A[PARENT(i)] >= A[i];    // 父结点不小于子结点
  最小堆:
  A[PARENT(i)] <= A[i];    // 父结点不大于子结点
4.堆的高度:
  从本结点到叶子结点的最长简单下降路径上边的数目,定义堆的高度为树根的高度,叶子结点高度为0,对于n个结点的堆,高度为 floor(lgn)即lgn向下取整数

二。堆的数据结构
1. A[N]: 堆数组
   length[A]: 数组中元素的个数
   heap-size[A]: 存放在A中的堆的元素个数
2. 操作:
 (1)MAX—HEAPIFY(A,i)过程O(lgn),保持最大堆性质的关键
 (2)BUILD—MAX—HEAP 过程O(n),构造最大堆
 (3)HEAPSORT 运行时间O(n*lgn),对数组进行排序
 (4)堆运用于优先级队列:
   MAX-HEAP-INSERT(A, val)    // insert a element to A
   HEAP-EXTRACT-MAX(A)            // remove and return the max element of A
   HEAP-INCREASE-KEY(A, i, ival) // increase the ith element's val to ival
   MAXIMUM(A)  // return the element which has the greatest val

  

三,程序实现

 

#include <stdio.h>
#include <stdlib.h>

#define PARENT(i)	(i) >> 1		// parent of i
#define LEFT(i)		(i) << 1		// left child of i
#define RIGHT(i)	((i)<<1) + 1	// right child of i

#define MINVAL	(signed)(1 << 31)

static int heap_size = 0;
static int length = 0;

/*
 * 以LEFT(i)和RIGHT(i)为根的两棵二叉树都是已建好的最大堆
 * 但A[i]可能小于其孩子,此时对其"下降"调整使满足最大堆性质
 * recusion Version
 */
void max_heapify(int *heap, int i)
{
	int	l, r, largest;
	l = LEFT(i);
	r = RIGHT(i);

	if (l <= heap_size && heap[l] > heap[i])
		largest = l;
	else
		largest = i;

	if (r <= heap_size && heap[r] > heap[largest])
		largest = r;
	
	if (largest != i) {	// need to be adjusted
		int	t = heap[i];
		heap[i] = heap[largest];
		heap[largest] = t;
		max_heapify(heap, largest);
	}
}

/* not recursion version */
void max_heapify02(int *heap, int i)
{
	int	l, r, largest;
	int	t;

	while (1) {
		l = LEFT(i);
		r = RIGHT(i);

		if (l <= heap_size && heap[l] > heap[i])
			largest = l;
		else
			largest = i;

		if (r <= heap_size && heap[r] > heap[largest])
			largest = r;

		if (largest != i) {
			t = heap[largest];
			heap[largest] = heap[i];
			heap[i] = t;
			i = largest;
		} else
			break;
	}
}

void build_max_heap(int *heap)
{
	int	i;

	for (i = heap_size / 2; i >= 1; i--)
		max_heapify(heap, i);
}

void heapsort(int *heap)
{
	int	i, t;

	build_max_heap(heap);
	for (i = length; i >= 2; i--) {
		t = heap[i];
		heap[i] = heap[1];
		heap[1] = t;
		heap_size--;
		max_heapify(heap, 1);
	}
	heap_size = length;
}

int heap_maximum(int *heap)
{
	return heap[1];
}

int heap_extract_max(int *heap)
{
	int	max;

	if (heap_size < 1) {
		fprintf(stderr, "heap underflow\n");
		exit(0);
	}
	max = heap[1];
	heap[1] = heap[heap_size];
	heap_size--;
	max_heapify(heap, 1);
	
	return max;
}

/* the key must not less then the original val heap[i] */
void heap_increase_key(int *heap, int i, int key)
{
	int	t;
	if (i < 1 || i > heap_size) {
		fprintf(stderr, "invalid position of %d\n", i);
		exit(-1);
	}
	if (key < heap[i]) {
		fprintf(stderr, "new key is smaller than current key\n");
		exit(-1);
	}
	
	while (i > 1 && key > heap[PARENT(i)]) {
		heap[i] = heap[PARENT(i)];
		i = PARENT(i);
	}
	heap[i] = key;
}

void max_heap_insert(int *heap, int key)
{
	heap_size++;
	heap[heap_size] = MINVAL;
	heap_increase_key(heap, heap_size, key);
}

void print_heap(int *heap)
{
	int	i;
	for (i = 1; i <= heap_size; i++)
		printf("%3d ", heap[i]);

printf("\n"); } int main() { //int arr[] = { 0, 10, 9, 2, 100, 300, 56, 67, 3, 2, 2, 20, 10 }; int arr[] = { 0, 100, 2, 20, 10 }; int i, x; length = sizeof(arr) / sizeof(*arr) - 1; heap_size = length; printf("original array:\n"); print_heap(arr); build_max_heap(arr); printf("max heap:\n"); print_heap(arr); /* printf("after sorted:\n"); heapsort(arr); print_heap(arr); */ printf("after extract max:\n"); heap_extract_max(arr); print_heap(arr); x = 33; printf("insert %d to the heap:\n", x); max_heap_insert(arr, x); print_heap(arr); return 0; }


四,部分习题解答:

6.1-1: 2^(h+1) 2^h
6.1-2: 含n个元素的堆的高度为 lgn 取下整数
  1+2+4+...+2^(h-1) < n <= 1+2+4+..2^h
  (1-2^h)/(1-2) < n <= (1-2^(h+1))/(1-2)   
  2^h-1 < n <= 2^(h+1)-1 --> 2^h <= n < 2^(h+1)
  --> h <= lgn < h+1    --> h = floor(lgn)
6.1-3: 由堆的定义可得
6.1-4:叶子结点
6.1-5: No
6.1-6:no
6.1-7: 最后一个结点n的父结点为n/2,其父结点之后为叶子结点

6.2-2:minmum heap
 MIN-HEAPIFY(A, i)
  l = LEFT(i)
  r = RIGHT(i)
  if l <= heap-size[A] and A[l] < A[i]
     smallest = l;
  else
    smallest = i;
  if r <= heap-size[A] and A[r] < A[smallest]
    smallest = r
  if smallest != i
    A[i] <-> A[smallest]
    MIN-HEAPIFY(A, smallest)
6.2-3:
  程序执行一次测试立刻退出,不改变堆
6.2-4:
  一次测试后立刻退出,堆不变
6.2-5:
  见上面代码 not recursion ersion
6.2-6:
  一直不知道证明???

6.3-2:
  从下至上建堆,可以利用建好的堆调用MAX-HEAPIFY
6.3-3:
  n <= 2^(h+1)
  第0层最多 2^h
  第1层最多 2^(h-1)
  ...
  第h层(根层) 1 >= n / (2^(h+1))

6.5-7:
  因为insert程序调用HEAP—INCREASE—KEY(),而increase函数要求插入的key大于原来的值,所以先把原来的值设为最小值。
6.5-8:
  见堆排序k路合并


思考题

6-1: 用插入法建堆
   BUILD-MAX-HEAP02(A)
	heap-size[A] = 1
	for i = 2 to length[A]
		MAX-HEAP-INSERT(A, A[i])

  MAX-HEAP-INSERT(A, A[i])
	同上
 a) 不一样 A = { 1, 2, 3 }

6-2: d叉堆的分析
  d叉堆与二叉堆类似,只是其中每一个非叶子结点有d个子女
  PARENT(i) = (i-2)/d + 1
  LEFTMOST(i) = d*(i-1) + 2
  //RIGHTMOST(i) = d*i+1
  CHILD(i, j) = d * (i-1) + j + 1
a) 根结点为A[1],根结点的孩子为A[2],A[3]...A[d+1] 
b) lgn / lgd
c) O(lgn/lgd * d)
  EXTRACT-MAX(A)
	max = A[1]
	A[1] = A[heap-size[A]]
	heap-size[A] = heap-size[A]-1
	MAX-HEAPIFY(A, 1)
其中:
MAX-HEAPIFY(A, i)
  l = LEFTMOST(i)
  r = RIGHTMOST(i)
  largest = i;
  while (l <= r && l <= heap-size[A])
	if (A[l] > A[largest])
		largest = l
		l <- l+1
	
  if largest != i
 	A[i] <-> A[largest]
	MAX-HEAPIFY(A, largest)
d) lgn / lgd
   MAX-HEAP-INSERT(A, key)
	heap-size[A] <- heap-size[A] + 1
	A[heap-size[A]] <- 无穷小
	HEAP-INCREASE-KEY(A, heap-size[A], key)
e) lgn / lg d
   HEAP-INCREASE-KEY(A, i, key)
	//if key < A[i]
	//    then error "new key is samller than current key"
	// A[i] <- key
	//while i > 1 and A[PARENT(i)] < A[i]
	//  do 	exchange A[i] <-> A[PARENT(i)]
	//	i <- PARENT(i)
	key <- MAX(A[i], key)	
	while i > 1 and A[PARENT(i)] < key
	   do A[i] <- A[PARENT(i)]
	      i = PARENT(i)
        A[i] = key




 

posted @ 2012-11-30 21:01  慧钦  阅读(148)  评论(0编辑  收藏  举报