MITx - 6.00.2x 笔记(Unit1 Lecture 1 Knapsack Problem)
Introduction to Computational Thinking and Data Science
Practice, practice, and practice !
- Optimization models 优化模型
- Statistical models 统计模型
- Simulation models 仿真模型
Lecture 1 优化和背包问题(Knapsack Problem)
- 优化模型的典型特征
- 需要达到最大化或最小化的函数对象
- 一些必须遵循的限制条件
- 有时我们找到的是足够好的解决办法,而不一定是最优解
0/1 Knapsack Problem
Greedy Algorithms
遇到很难的问题,我们可以做什么?
例题:假设希望摄入的热量不超过800卡路里,如何根据食物热量表选择食物?
class Food(object):
def __init__(self, n, v, w):
self.name = n
self.value = v
self.calories = w
def getValue(self):
return self.value
def getCost(self):
return self.calories
def density(self):
return self.getValue() / self.getCost()
def __str_(self):
return self.name + ': <' + str(self.value) + ', ' + str(self.calories) + '>'
def buildMenu(names, values, calories):
"""names, values, calories lists of same length.
name a list of strings
values and calories lists of numbers
return list of Foods"""
menu = []
for i in range(len(values)):
menu.append(Food(name[i], values[i], calories[i]))
return menu
def greedy(items, maxCost, keyFunction):
"""assumes items a list, maxCost >= 0,
keyFunction maps elements of items to numbers"""
itemsCopy = sorted(items, key = keyFunction, reverse = True) # 从高到低
result = []
totalValue, totalCost = 0.0, 0.0
for i in range(len(items)):
if (totalCost + itemsCopy[i].getCost()) <= maxCost: # 检查是否还有空间放新东西
result.append(itemsCopy[i])
totalCost += itemsCopy[i].getCost()
totalValue += itemsCopy[i].getValue()
return (result, totalValue)
def testGreedy(items, constraint, keyFunction):
taken, val = greedy(items, constraint, keyFunction)
print('Total value of items taken = ', val)
for item in taken:
print(' ', item)
def testGreedys(foods, maxUnits):
print('Use greedy by value to allocate', maxUnits, 'calories')
testGreedy(foods, maxUnits, Food.getValue)
print('\nUse greedy by cost to allocate', maxUnits, 'calories')
testGreedy(foods, maxUnits,
lambda x: 1/Food.getCost(x))
print('\nUse greedy by density to allocate', maxUnits, 'calories')
testGreedy(foods, maxUnits, Food.density)
names = ['wine', 'beer', 'pizza', 'burger', 'fries', 'cola', 'apple', 'donut', 'cake']
values = [89, 90, 95, 100, 90, 79, 50, 10]
calories = [123, 154, 258, 354, 365, 150, 95, 195]
foods = buildMenu(names, values, calories)
testGreedys(foods, 750)
# Out
Use greedy by value to allocate 750 calories
Total value of items taken = 284.0
burger: <100, 354>
pizza: <95, 258>
wine: <89, 123>
Use greedy by cost to allocate 750 calories
Total value of items taken = 318.0
apple: <50, 95>
wine: <89, 123>
cola: <79, 150>
beer: <90, 154>
donut: <10, 195>
Use greedy by density to allocate 750 calories
Total value of items taken = 318.0
wine: <89, 123>
beer: <90, 154>
cola: <79, 150>
apple: <50, 95>
donut: <10, 195>