MITx - 6.00.2x 笔记(Unit1 Lecture 2 Decision Trees and Dynamic Programming)
Lecture 2 Decision Trees and Dynamic Programming
Brute Force Algorithms
暴力算法,穷举法
Decision Tree
class Food(object):
def __init__(self, n, v, w):
self.name = n
self.value = v
self.calories = w
def getValue(self):
return self.value
def getCost(self):
return self.calories
def density(self):
return self.getValue() / self.getCost()
def __str__(self):
return self.name + ': <' + str(self.value) + ', ' + str(self.calories) + '>'
def buildMenu(names, values, calories):
"""names, values, calories lists of same length.
name a list of strings
values and calories lists of numbers
return list of Foods"""
menu = []
for i in range(len(values)):
menu.append(Food(names[i], values[i], calories[i]))
return menu
def greedy(items, maxCost, keyFunction):
"""assumes items a list, maxCost >= 0,
keyFunction maps elements of items to numbers"""
itemsCopy = sorted(items, key = keyFunction, reverse = True) # 从高到低
result = []
totalValue, totalCost = 0.0, 0.0
for i in range(len(items)):
if (totalCost + itemsCopy[i].getCost()) <= maxCost: # 检查是否还有空间放新东西
result.append(itemsCopy[i])
totalCost += itemsCopy[i].getCost()
totalValue += itemsCopy[i].getValue()
return (result, totalValue)
def testGreedy(items, constraint, keyFunction):
taken, val = greedy(items, constraint, keyFunction)
print('Total value of items taken = ', val)
for item in taken:
print(' ', item)
def testGreedys(foods, maxUnits):
print('Use greedy by value to allocate', maxUnits, 'calories')
testGreedy(foods, maxUnits, Food.getValue)
print('\nUse greedy by cost to allocate', maxUnits, 'calories')
testGreedy(foods, maxUnits,
lambda x: 1/Food.getCost(x))
print('\nUse greedy by density to allocate', maxUnits, 'calories')
testGreedy(foods, maxUnits, Food.density)
def maxVal(toConsider, avail):
"""Assumes toConsider a list of items, avail a weight
Return a tuple of the total value of a solution to the
0/1 knapsack problem and the items of that solution"""
if toConsider == [] or avail == 0:
result = (0.0, ())
elif toConsider[0].getCost() > avail:
# Explore right branch only
result = maxVal(toConsider[1: ], avail)
else:
nextItem = toConsider[0]
# Explore left branch
withVal, withToTake = maxVal(toConsider[1: ],
avail - nextItem.getCost())
withVal += nextItem.getValue()
# Explore right branch
withoutVal, withoutToTake = maxVal(toConsider[1: ], avail)
# Choose better branch
if withVal > withoutVal:
result = (withVal, withToTake + (nextItem, ))
else:
result = (withoutVal, withoutToTake)
return result
def testMaxVal(foods, maxUnits, printItems = True):
print('Use search tree to allocate', maxUnits, ' calories')
val, taken = maxVal(foods, maxUnits)
print('Total value of items taken =', val)
if printItems:
for item in taken:
print(' ', item)
names = ['wine', 'beer', 'pizza', 'burger', 'fries', 'cola', 'apple', 'donut', 'cake']
values = [89, 90, 95, 100, 90, 79, 50, 10]
calories = [123, 154, 258, 354, 365, 150, 95, 195]
foods = buildMenu(names, values, calories)
testGreedys(foods, 750)
print(' ')
testMaxVal(foods, 750)
# Out:
Use greedy by value to allocate 750 calories
Total value of items taken = 284.0
burger: <100, 354>
pizza: <95, 258>
wine: <89, 123>
Use greedy by cost to allocate 750 calories
Total value of items taken = 318.0
apple: <50, 95>
wine: <89, 123>
cola: <79, 150>
beer: <90, 154>
donut: <10, 195>
Use greedy by density to allocate 750 calories
Total value of items taken = 318.0
wine: <89, 123>
beer: <90, 154>
cola: <79, 150>
apple: <50, 95>
donut: <10, 195>
Use search tree to allocate 750 calories
Total value of items taken = 353.0
cola: <79, 150>
pizza: <95, 258>
beer: <90, 154>
wine: <89, 123>
背包问题示例
# generate all combinations of N items
def powerSet(items):
N = len(items)
# enumerate the 2**N possible combinations
for i in range(2**N):
combo = []
for j in range(N):
# test bit jth of integer i
# ">>" is one bit right move in binary, equals divde 2**j
# check jth digit of integer i, if 1 take it
if (i >> j) % 2 == 1:
combo.append(items[j])
yield combo
共有N个物品,决定是否放入背包中,每个物品放或者不放,共有2N2N种可能。
要求列出所有放入的组合,所以只考虑(i >> j) % 2 == 1
的情况,>>
为按位运算符。
习题:
假设将N个物品放入两个背包中,遍历各种组合。
def yieldAllCombos(items):
"""
Generates all combinations of N items into two bags, whereby each
item is in one or zero bags.
Yields a tuple, (bag1, bag2), where each bag is represented as a list
of which item(s) are in each bag.
"""
# Your code here
N = len(items)
for i in range(3**N):
bag_1 = []
bag_2 = []
for j in range(N):
if (i // 3**j) % 3 == 1:
bag_1.append(items[j])
elif (i // 3**j) % 3 == 2:
bag_2.append(items[j])
yield (bag_1, bag_2)
Recursive Fibonacci
直接用递归计算斐波那契数列效率很低,算到第十几个数的就至少要好几秒,用这种方法算第120个数简直不可能。
复习一下6.00 1x中讲过的优化方法,用字典存储已经算过的fib数,可以直接调用从而避免重复计算:
def fastFib(n, memo = {}):
"""Assumes n is an int >= 0, memo used only by recursive calls
Return Fibonacci of n"""
if n ==0 or n == 1:
return 1
try:
return memo[n]
except KeyError:
result = fastFib(n-1, memo) + fastFib(n-2, memo)
memo[n] = result
return result
fastFib(120)
不到1秒就出结果。
Dynamic Programming(动态规划)
小结