UVA11468 Substring

题目大意:给你一些模板串和组成这些模板串的字符,从中随机选L个字符,每个字符都有各自被选的概率p,保证p之和为1,问抽到的串不包含模板串的概率

 

 

建一颗tire树,不能走打了tag的标记,走每条边概率已知,求走到深度L的概率,dp[i][j]表示到第i个点还能走j步的概率,转移即可

但这样做存在问题,可能某个短串是长串的子串,但是上述做法无法判断

可以建一颗tire树,从某个节点不断走fail,要求fail路径上的点都没有tag标记

其实这就是last的功能,即最近一个t串相同的ag标记的位置

 

莫名其妙空间开大了过不了,开小了过了,没有memset  p数组过不了,memset了过了,是不是数据出的有问题,串中含有给的字符里没有的字符?

  1 #include <iostream>
  2 #include <cstdio>
  3 #include <cstring>
  4 #include <cstdlib>
  5 #include <algorithm>
  6 #include <queue>
  7 #include <vector>
  8 #include <cmath> 
  9 #define min(a, b) ((a) < (b) ? (a) : (b))
 10 #define max(a, b) ((a) > (b) ? (a) : (b))
 11 #define abs(a) ((a) < 0 ? (-1 * (a)) : (a))
 12 inline void swap(int &a, int &b)
 13 {
 14     long long tmp = a;a = b;b = tmp;
 15 }
 16 inline void read(int &x)
 17 {
 18     x = 0;char ch = getchar(), c = ch;
 19     while(ch < '0' || ch > '9') c = ch, ch = getchar();
 20     while(ch <= '9' && ch >= '0') x = x * 10 + ch - '0', ch = getchar();
 21     if(c == '-') x = -x;
 22 }
 23 
 24 const int INF = 0x3f3f3f3f;
 25 
 26 int t, k, n, l, ch[2000][80], fail[2000], last[2000], cnt, tag[2000], ca, vis[2000][100];
 27 double p[800], dp[2000][100];
 28 char s[200][200], base[800];
 29 int check(char c)
 30 {
 31     if(c >= '0' && c <= '9') return  c - '0' + 1;
 32     if(c >= 'A' && c <= 'Z') return c - 'A' + 11;
 33     return c - 'a' + 37;
 34 }
 35 void insert(int x)
 36 {
 37     int now = 0;
 38     for(register int i = 1;s[x][i] != '\0';++ i)
 39     {
 40         int tmp = check(s[x][i]);
 41         if(ch[now][tmp]) now = ch[now][tmp];
 42         else now = ch[now][tmp] = ++ cnt;
 43     }
 44     ++ tag[now];
 45 }
 46 
 47 int q[1000], he, ta;
 48 
 49 void build()
 50 {
 51     he = ta = 0;
 52     for(register int i = 1;i <= 62;++ i)
 53         if(ch[0][i]) q[ta ++] = ch[0][i], fail[ch[0][i]] = last[ch[0][i]] = 0;
 54     while(he < ta)
 55     {
 56         int now = q[he ++];
 57         for(register int i = 1;i <= 62;++ i)
 58         {
 59             int u = ch[now][i];
 60             if(!u)
 61             {
 62                 ch[now][i] = ch[fail[now]][i];
 63                 continue;
 64             }
 65             q[ta ++] = u;
 66             int v = fail[now];
 67             while(v && !ch[v][i]) v = fail[v];
 68             fail[u] = ch[v][i];
 69             last[u] = tag[fail[u]] ? fail[u] : last[fail[u]];
 70         }
 71     }
 72 }
 73 
 74 double dfs(int x, int y)
 75 {
 76     if(!y) return 1;
 77     if(vis[x][y]) return dp[x][y];
 78     vis[x][y] = 1;
 79     dp[x][y] = 0;
 80     for(register int i = 1;i <= 62;++ i)
 81         if(!tag[ch[x][i]] && !last[ch[x][i]]) dp[x][y] += p[i] * dfs(ch[x][i], y - 1);
 82     return dp[x][y];
 83 } 
 84 
 85 int main()
 86 {
 87     read(t);
 88     for(ca = 1;t;-- t, ++ ca)
 89     {
 90         memset(ch, 0, sizeof(ch)), memset(tag, 0, sizeof(tag)), cnt = 0, memset(vis, 0, sizeof(vis));memset(p, 0, sizeof(p));
 91         read(k);
 92         for(register int i = 1;i <= k;++ i) scanf("%s", s[i] + 1), insert(i);
 93         read(n);
 94         for(register int i = 1;i <= n;++ i)
 95             scanf("%s", &base[i]), scanf("%lf", &p[check(base[i])]);
 96         read(l);
 97         build();
 98         printf("Case #%d: %.6lf\n", ca, dfs(0, l));
 99     }
100     return 0;
101 }
UVA11468

 

posted @ 2018-01-21 08:25  嘒彼小星  阅读(243)  评论(0编辑  收藏  举报