BZOJ1036: [ZJOI2008]树的统计Count

1036: [ZJOI2008]树的统计Count

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 20055  Solved: 8146
[Submit][Status][Discuss]

Description

  一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w。我们将以下面的形式来要求你对这棵树完成
一些操作: I. CHANGE u t : 把结点u的权值改为t II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值 I
II. QSUM u v: 询问从点u到点v的路径上的节点的权值和 注意:从点u到点v的路径上的节点包括u和v本身

Input

  输入的第一行为一个整数n,表示节点的个数。接下来n – 1行,每行2个整数a和b,表示节点a和节点b之间有
一条边相连。接下来n行,每行一个整数,第i行的整数wi表示节点i的权值。接下来1行,为一个整数q,表示操作
的总数。接下来q行,每行一个操作,以“CHANGE u t”或者“QMAX u v”或者“QSUM u v”的形式给出。
对于100%的数据,保证1<=n<=30000,0<=q<=200000;中途操作中保证每个节点的权值w在-30000到30000之间。

Output

  对于每个“QMAX”或者“QSUM”的操作,每行输出一个整数表示要求输出的结果。

Sample Input

4
1 2
2 3
4 1
4 2 1 3
12
QMAX 3 4
QMAX 3 3
QMAX 3 2
QMAX 2 3
QSUM 3 4
QSUM 2 1
CHANGE 1 5
QMAX 3 4
CHANGE 3 6
QMAX 3 4
QMAX 2 4
QSUM 3 4

Sample Output

4
1
2
2
10
6
5
6
5
16

HINT

Source

 

树链剖分模板题

  1 #include <iostream>
  2 #include <cstdio>
  3 #include <cstring>
  4 #include <cstdlib>
  5 #include <algorithm>
  6 #include <queue>
  7 #include <vector>
  8 #define min(a, b) ((a) < (b) ? (a) : (b))
  9 #define max(a, b) ((a) > (b) ? (a) : (b))
 10 #define abs(a) ((a) < 0 ? (-1 * (a)) : (a))
 11 inline void swap(int &a, int &b){int tmp = a;a = b;b = tmp;}
 12 inline void read(int &x)
 13 {
 14     x = 0;char ch = getchar(), c = ch;
 15     while(ch < '0' || ch > '9') c = ch, ch = getchar();
 16     while(ch <= '9' && ch >= '0') x = x * 10 + ch - '0', ch = getchar();
 17     if(c == '-') x = -x;
 18 }
 19 const int INF = 0x3f3f3f3f;
 20 const int MAXN = 100000 + 10;
 21 struct Edge
 22 {
 23     int u,v,nxt;
 24     Edge(int _u, int _v, int _nxt){u = _u;v = _v;nxt = _nxt;}
 25     Edge(){}
 26 }edge[MAXN << 1];
 27 int head[MAXN], cnt;
 28 inline void insert(int a, int b)
 29 {
 30     edge[++cnt] = Edge(a,b,head[a]);
 31     head[a] = cnt;
 32 }
 33 int n,q,tim,w[MAXN],size[MAXN],top[MAXN],son[MAXN],deep[MAXN],fa[MAXN],tid[MAXN],rank[MAXN];
 34 void dfs1(int u)
 35 {
 36     size[u] = 1;
 37     for(register int pos = head[u];pos;pos = edge[pos].nxt)
 38     {
 39         int v = edge[pos].v;
 40         if(v == fa[u]) continue;
 41         deep[v] = deep[u] + 1, fa[v] = u;
 42         dfs1(v);
 43         size[u] += size[v];
 44         if(son[u] == -1 || size[v] > size[son[u]]) son[u] = v;
 45     }
 46 }
 47 void dfs2(int u, int tp)
 48 {
 49     top[u] = tp, tid[u] = ++ tim, rank[tim] = u;
 50     if(son[u] == -1) return;
 51     dfs2(son[u], tp);
 52     for(register int pos = head[u];pos;pos = edge[pos].nxt)
 53     {
 54         int v = edge[pos].v;
 55         if(v != son[u] && v != fa[u]) dfs2(v, v);
 56     }
 57 }
 58 
 59 struct Node
 60 {
 61     int l,r,ma,sum,lazy;
 62     Node(){l = r = ma = sum = lazy = 0;}
 63 }node[MAXN << 2];
 64 
 65 Node merge(Node &a, Node &b)
 66 {
 67     Node re;
 68     if(a.l == 0) return b;
 69     else if(b.l == 0) return a;
 70     re.l = a.l, re.r = b.r;
 71     re.ma = max(a.ma, b.ma);
 72     re.sum = a.sum + b.sum;
 73     return re;
 74 }
 75 
 76 void pushup(Node &a, Node &l, Node &r)
 77 {
 78     if(a.lazy)
 79     {
 80         l.sum += (l.r - l.l + 1) * a.lazy;
 81         r.sum += (r.r - r.l + 1) * a.lazy;
 82         l.lazy += a.lazy;
 83         r.lazy += a.lazy;
 84         l.ma += a.lazy;
 85         r.ma += a.lazy;
 86         a.lazy = 0;
 87     }
 88 }
 89 
 90 void build(int o = 1, int l = 1, int r = n)
 91 {
 92     node[o].l = l, node[o].r = r;
 93     if(l == r)
 94     {
 95         node[o].ma = node[o].sum = w[rank[l]];
 96         return;
 97     }
 98     int mid = (l + r) >> 1;
 99     build(o << 1, l, mid);
100     build(o << 1 | 1, mid + 1, r);
101     node[o] = merge(node[o << 1], node[o << 1 | 1]);
102     return;
103 }
104 
105 void modify(int ll, int rr, int k, int o = 1)
106 {
107     pushup(node[o], node[o << 1], node[o << 1 | 1]);
108     if(ll <= node[o].l && rr >= node[o].r)
109     {
110         node[o].ma += k;
111         node[o].sum += (node[o].r - node[o].l + 1) * k;
112         node[o].lazy += k;
113         return;
114     }
115     int mid = (node[o].l + node[o].r) >> 1;
116     if(mid >= ll) modify(ll, rr, k, o << 1);
117     if(mid < rr) modify(ll, rr, k, o << 1 | 1);
118     node[o] = merge(node[o << 1], node[o << 1 | 1]); 
119     return;
120 }
121 
122 Node ask(int ll, int rr, int o = 1)
123 {
124     pushup(node[o], node[o << 1], node[o << 1 | 1]);
125     if(ll <= node[o].l && rr >= node[o].r) return node[o];
126     Node a,b;a.l= -1, b.l = -1;
127     int mid = (node[o].l + node[o].r) >> 1;
128     if(mid >= ll) a = ask(ll, rr,o << 1);
129     if(mid < rr) b = ask(ll, rr, o << 1 | 1);
130     if(a.l == -1) return b;
131     else if(b.l == -1) return a;
132     else return merge(a, b);
133 }
134 
135 Node find(int x, int y)
136 {
137     int f1 = top[x], f2 = top[y];
138     Node tmp;
139     Node re;
140     while(f1 != f2)
141     {
142         if(deep[f1] < deep[f2]) swap(f1, f2), swap(x, y);
143         tmp = ask(tid[f1], tid[x]);
144         re = merge(re, tmp);
145         x = fa[f1];f1 = top[x];
146     }
147     if(x == y) 
148     {
149         tmp = ask(tid[x], tid[x]);
150         return merge(re, tmp);
151     }
152     if(deep[x] > deep[y]) swap(x, y);
153     tmp = ask(tid[x], tid[y]);
154     return merge(re, tmp);
155 }
156 
157 char s[20];
158 
159 int main()
160 {
161     read(n);
162     for(register int i = 1;i < n;++ i)
163     {
164         int tmp1,tmp2,tmp3;
165         read(tmp1), read(tmp2);
166         insert(tmp1, tmp2), insert(tmp2, tmp1);
167     }
168     for(register int i = 1;i <= n;++ i) read(w[i]);
169     memset(son, -1, sizeof(son));
170     dfs1(1);
171     dfs2(1, 1);
172     build();
173     read(q);Node tmp;
174     for(register int i = 1;i <= q;++ i)
175     {
176         int tmp1,tmp2;
177         scanf("%s", s + 1);read(tmp1), read(tmp2);
178         if(s[1] == 'C') modify(tid[tmp1], tid[tmp1], tmp2 - w[tmp1]), w[tmp1] = tmp2;
179         else
180         {    
181             tmp = find(tmp1, tmp2);
182             if(s[2] == 'M') printf("%d\n", tmp.ma);
183             else printf("%d\n", tmp.sum);
184         }
185     }
186     return 0;
187 }
BZOJ1036

 

posted @ 2018-01-17 19:42  嘒彼小星  阅读(216)  评论(0编辑  收藏  举报