UVA1204 Fun Game

Fun Game

 

https://odzkskevi.qnssl.com/8d698323a1e07d605cdeea708ee8a01d?v=1508703139

 

【题解】

不难发现如果一个串的原串或反转串是另一个串的子串,那么这个串是没有用的

我们把他剔除出去

如果此时只有一个串,暴力枚举解检查即可(网上很多写法是KMP。。不是很明白,没仔细看他们代码

多个串则状压DP

dp[s][i][0/1]表示s串已经选了,最后一个串是i,i是正着/倒着的,最大重叠字母数

刷表法转移即可

如何处理圈?我们强行在第一个串的地方断开,按照第一个串的正着的方向为圈的传递方向即可,

最后的时候枚举最后一个串跟第一个串交一下算答案

 

  1 #include <iostream>
  2 #include <algorithm>
  3 #include <cstdio>
  4 #include <cstdlib>
  5 #include <cstring>
  6 #include <vector> 
  7 #define min(a, b) ((a) < (b) ? (a) : (b))
  8 #define max(a, b) ((a) > (b) ? (a) : (b))
  9 
 10 inline void swap(int &a, int  &b)
 11 {
 12     long long tmp = a;a = b;b = tmp;
 13 }
 14 
 15 inline void read(int& x)
 16 {
 17     x = 0;char ch = getchar(), c = ch;
 18     while(ch < '0' || ch > '9')c = ch, ch = getchar();
 19     while(ch <= '9' && ch >= '0')x = x * 10 + ch - '0', ch = getchar();
 20 }
 21 
 22 const int INF = 0x3f3f3f3f;
 23 const int MAXN = 20;
 24 const int MAXNUM = 1000;
 25 
 26 int dp[(1 << MAXN) + 10][MAXN + 5][2], die[MAXN][2][MAXN][2], n, ma, sum, len[MAXN], cnt[MAXN], tot, b[MAXN];
 27 char s[MAXN][MAXNUM];
 28 
 29 inline void init()
 30 {
 31     memset(dp, 0, sizeof(dp));
 32     memset(die, 0, sizeof(die));
 33     tot = 0;
 34     sum = 0;
 35     memset(b, 0, sizeof(b));
 36     memset(len, 0, sizeof(len));
 37     memset(cnt, 0, sizeof(cnt));
 38     //check j是否包含在i中 
 39     for(register int i = 1;i <= n;++i) 
 40     {
 41         scanf("%s", s[i] + 1);
 42         len[i] = strlen(s[i] + 1);
 43     }
 44     for(register int i = 1;i <= n;++ i)
 45         for(register int j = 1;j <= n;++ j)
 46         {
 47             if(i == j || b[i] || b[j] || len[j] > len[i])continue;
 48             //正着配 
 49             for(register int a = 1;a <= len[i] - len[j] + 1;++ a)
 50             {
 51                 int tmp1 = a;
 52                 while(s[i][tmp1] == s[j][tmp1 - a + 1] && tmp1 - a + 1 <= len[j]) ++ tmp1;
 53                 if(tmp1 - a + 1 > len[j]) b[j] = 1;
 54             }
 55             //倒着配
 56             for(register int a = len[i];a >= len[j];-- a)
 57             {
 58                 int tmp1 = a, p = 1;
 59                 while(s[i][tmp1] == s[j][p] && p <= len[j]) -- tmp1, ++ p;
 60                 if(p > len[j]) b[j] = 1;
 61             }
 62         }
 63     for(register int i = 1;i <= n;++ i)
 64         if(!b[i])
 65             cnt[++ tot] = i, sum += len[i];
 66     //j跟在i后面重叠部分大小 
 67     for(register int p = 1;p <= tot;++ p)
 68         for(register int q = 1;q <= tot;++ q)
 69         {
 70             int i = cnt[p], j = cnt[q];
 71             if(i == j)continue;
 72             //0 0
 73             for(register int a = 1;a <= len[i];++ a)
 74             {
 75                 int b = 1, tmp = a;
 76                 while(s[i][tmp] == s[j][b] && tmp <= len[i] && b <= len[j])++ tmp, ++ b;
 77                 if(tmp > len[i]) 
 78                 {
 79                     die[p][0][q][0] = len[i] - a + 1;
 80                     break;
 81                 }
 82             }
 83             //0 1
 84             for(register int a = 1;a <= len[i];++ a)
 85             {
 86                 int b = len[j], tmp = a;
 87                 while(s[i][tmp] == s[j][b] && tmp <= len[i] && b >= 1)++ tmp, -- b;
 88                 if(tmp > len[i]) 
 89                 {
 90                     die[p][0][q][1] = len[i] - a + 1;
 91                     break;
 92                 }
 93             }
 94             //1 0
 95             for(register int a = len[i];a >= 1;-- a)
 96             {
 97                 int b = 1, tmp = a;
 98                 while(s[i][tmp] == s[j][b] && tmp >= 1 && b <= len[j])-- tmp, ++ b;
 99                 if(tmp < 1) 
100                 {
101                     die[p][1][q][0] = a;
102                     break;
103                 }
104             }
105             //1 1
106             for(register int a = len[i];a >= 1;-- a)
107             {
108                 int b = len[j], tmp = a;
109                 while(s[i][tmp] == s[j][b] && tmp >= 1 && b >= 1)-- tmp, -- b;
110                 if(tmp < 1) 
111                 {
112                     die[p][1][q][1] = a;
113                     break;
114                 }
115             }
116         }
117         ma = 1 << tot;
118 }
119 
120 int main()
121 {
122     while(scanf("%d", &n) != EOF && n)
123     {
124         init();
125         int flag = 0;
126         if(tot == 1)
127         {
128             int x = cnt[tot];
129             for(register int i = 1;i <= len[x];++ i)
130             {
131                 for(register int j = 1;j <= len[x];++ j)
132                 {
133                     if(j + i - 1 > len[x]) break;
134                     int p1 = 1, p2 = j, rank = 0;
135                     while(s[x][p1] == s[x][p2] && rank < len[x])
136                     {
137                         ++ p1, ++ p2, ++ rank;
138                         if(p1 > len[x]) p1 = 1;
139                         if(p2 > j + i - 1) p2 = 1;
140                     }
141                     if(rank >= len[x])
142                     {
143                         printf("%d\n", max(2, i));
144                         flag = 1;
145                         break;
146                     }
147                 }
148                 if(flag) break;
149             }
150             if(flag) continue;
151         }
152         //dp[S][i][0/1]表示以1号字符串为头,已经选了S,最后一个是i的正/反状态的最大折叠数 
153         //dp[S | k][k][p] = max(dp[S | k][k][p], dp[S][i][p'] + die[i][p'][k][p])
154          for(register int S = 0;S < ma;++ S)
155             for(register int i = 1;i <= tot;++ i)/*分别用dp[S][i][0]和dp[S][i][1]去更新*/
156             {
157                 if(!(S & 1))continue;
158                 if(!(S & (1 << (i - 1)))) continue;
159                 for(register int k = 1;k <= tot;++ k)
160                 {
161                     if(S & (1 << (k - 1))) continue;
162                     if(S == 1)
163                     {
164                         dp[S | (1 << (k - 1))][k][0] = max(dp[S | (1 << (k - 1))][k][0], dp[S][i][0] + die[i][0][k][0]);
165                         dp[S | (1 << (k - 1))][k][1] = max(dp[S | (1 << (k - 1))][k][1], dp[S][i][0] + die[i][0][k][1]);                        
166                     }
167                     else
168                     {
169                         dp[S | (1 << (k - 1))][k][0] = max(dp[S | (1 << (k - 1))][k][0], max(dp[S][i][0] + die[i][0][k][0], dp[S][i][1] + die[i][1][k][0]));
170                         dp[S | (1 << (k - 1))][k][1] = max(dp[S | (1 << (k - 1))][k][1], max(dp[S][i][0] + die[i][0][k][1], dp[S][i][1] + die[i][1][k][1]));
171                     }
172                 }
173             }
174         int ans = 0;
175         for(register int i = 1;i <= tot;++i)
176             ans = max(ans, max(dp[ma - 1][i][0] + die[i][0][1][0], dp[ma - 1][i][1] + die[i][1][1][0]));
177         printf("%d\n", max(2, sum - ans));
178     }
179     return 0;
180 }
UVA1204

 

posted @ 2017-10-25 14:32  嘒彼小星  阅读(362)  评论(0编辑  收藏  举报