UVA1336 Fixing the Great Wall

Fixing the Great Wall

https://odzkskevi.qnssl.com/b7d37f69f479d57e44735fc5d6403983?v=1508326275

 

【题解】

按照x排序

dp[i][j][0/1]表示从i到j全修好,当前在i/j的最小代价和已知的未修好的时间附加代价(td)
转移即可,即

dp[i][j][0/1] - > d[i-1][j][0]

dp[i][j][0/1] - > d[i][j + 1][1]

为什么这样?想想不这样的情况,会发现都不如这样优秀

还有一个小处理,把起点虚成一个节点做

 

 1 #include <iostream>
 2 #include <algorithm>
 3 #include <cstdio>
 4 #include <cstdlib>
 5 #include <cstring>
 6 #include <vector> 
 7 #define min(a, b) ((a) < (b) ? (a) : (b))
 8 #define max(a, b) ((a) > (b) ? (a) : (b))
 9 
10 inline void swap(int &a, int &b)
11 {
12     long long tmp = a;a = b;b = tmp;
13 }
14 
15 inline void read(int &x)
16 {
17     x = 0;char ch = getchar(), c = ch;
18     while(ch < '0' || ch > '9')c = ch, ch = getchar();
19     while(ch <= '9' && ch >= '0')x = x * 10 + ch - '0', ch = getchar();
20 }
21 
22 const int INF = 0x3f3f3f3f;
23 const int MAXN = 10000 + 10;
24 
25 int n, v, s, sum[MAXN];
26 struct Node
27 {
28     int x,c,d;
29 }node[MAXN];
30 
31 int cmp(Node a, Node b)
32 {
33     return a.x < b.x;
34 }
35 
36 //dp[i][j][0/1]表示修复i~j这段区间,当前在最左端(0), 最右端(1)的
37 //最小花费 
38 
39 double dp[MAXN][MAXN][2];
40 
41 int main()
42 {
43     while(scanf("%d %d %d", &n, &v, &s) != EOF && n && v && s)
44     {
45         for(register int i = 1;i <= n;++ i)
46             read(node[i].x), read(node[i].c), read(node[i].d);
47         node[n + 1].x = s;
48         node[n + 1].c = 0;
49         node[n + 1].d = 0;
50         ++ n;
51         std::sort(node + 1, node + 1 + n, cmp);
52         for(register int i = 1;i <= n;++ i)
53             sum[i] = sum[i - 1] + node[i].d;
54         for(register int i = 1;i <= n;++ i)
55             for(register int j = 1;j <= n;++ j)
56             {
57                 if(i == j && node[i].x == s && node[i].c == 0 && node[i].d == 0) dp[i][j][0] = dp[i][j][1] = 0;
58                 else dp[i][j][0] = dp[i][j][1] = INF;
59             }
60         for(register int len = 1;len <= n;++ len)
61         {
62             for(register int i = 1;i <= n;++ i)
63             {
64                 int j = i + len - 1;
65                 dp[i - 1][j][0] = min(dp[i - 1][j][0],
66                                       min(dp[i][j][0] + (double)(node[i].x - node[i - 1].x)/v * (sum[i - 1] + sum[n] - sum[j]) + node[i - 1].c,
67                                           dp[i][j][1] + (double)(node[j].x - node[i - 1].x)/v * (sum[i - 1] + sum[n] - sum[j]) + node[i - 1].c));
68                 dp[i][j + 1][1] = min(dp[i][j + 1][1], 
69                                       min(dp[i][j][0] + (double)(node[j + 1].x - node[i].x)/v * (sum[i - 1] + sum[n] - sum[j]) + node[j + 1].c,
70                                             dp[i][j][1] + (double)(node[j + 1].x - node[j].x)/v * (sum[i - 1] + sum[n] - sum[j]) + node[j + 1].c));
71             }
72         }
73         printf("%d\n", min((int)dp[1][n][0], (int)dp[1][n][1]));
74     }
75     return 0;
76 }
UVA1336

 

posted @ 2017-10-24 19:45  嘒彼小星  阅读(220)  评论(0编辑  收藏  举报