NOIP模拟 17.8.15

 NOIP模拟17.8.15

A 债务
文件名 输入文件 输出文件 时间限制 空间限制
debt.pas/c/cpp debt.in debt.out 1s 128MB
【题目描述】
小 G 有一群好朋友,他们经常互相借钱。假如说有三个好朋友 A,B,C。A
欠 B 20 元,B 欠 C 20 元,总债务规模为 20+20=40 元。小 G 是个追求简约的人,
他觉得这样的债务太繁杂了。他认为,上面的债务可以完全等价为 A 欠 C 20 元,
B 既不欠别人,别人也不欠他。这样总债务规模就压缩到了 20 元。
现在给定 n 个人和 m 条债务关系。小 G 想找到一种新的债务方案,使得每个
人欠钱的总数不变,或被欠钱的总数不变(但是对象可以发生变化),并且使得总
债务规模最小。
【输入格式】
输入文件第一行两个数字 n, m,含义如题目所述。
接下来 m 行,每行三个数字 ai, bi, ci,表示 ai 欠 bi 的钱数为 ci。
注意,数据中关于某两个人 A 和 B 的债务信息可能出现多次,将其累加即可。
如”A 欠 B 20 元”、”A 欠 B 30 元”、”B 欠 A 10 元”,其等价为”A 欠 B 40 元”。
【输出格式】
输出文件共一行,输出最小的总债务规模。
【样例输入 1】
5 3
1 2 10
2 3 1
2 4 1
2
【样例输出 1】
10
【样例输入 2】
4 3
1 2 1
2 3 1
3 1 1
【样例输出 2】
0
【数据范围】
对于 30% 的数据,1 ≤ n ≤ 10,1 ≤ m ≤ 10。
对于 60% 的数据,1 ≤ n ≤ 100, 1 ≤ m ≤ 104。
对于 80% 的数据,1 ≤ n ≤ 104,1 ≤ m ≤ 104。
对于 100% 的数据,1 ≤ n ≤ 106,1 ≤ m ≤ 106。
对于所有的数据,保证 1 ≤ ai, bi ≤ n, 0 < ci ≤ 100。

【题解】

水题,无fuck说

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <cstdlib>
 5 #define jue(a) (((a) >= 0) ? (a) : (-a))
 6 
 7 const int INF = 0x3f3f3f3f;
 8 const int MAXN = 20000000 + 10;
 9 
10 inline void read(int &x)
11 {
12     x = 0;char ch = getchar(), c = ch;
13     while(ch < '0' || ch > '9') c = ch, ch = getchar();
14     while(ch <= '9' && ch >= '0')x = x * 10 + ch - '0', ch = getchar();
15     if(c == '-')x = -x;
16 }
17 
18 int n,m;
19 int qian[MAXN], ans;//qian[i]正数表示第i个人被欠多少钱,负数表示欠别人多少钱 
20 
21 int main()
22 {
23     scanf("%d %d", &n, &m);
24     register int tmp1, tmp2, tmp3;
25     for(register int i = 1;i <= m;++ i)
26     {
27         read(tmp1), read(tmp2), read(tmp3);
28         qian[tmp1] -=tmp3;
29         qian[tmp2] += tmp3; 
30     }
31     for(register int i = 1;i <= n;++ i) ans += jue(qian[i]);
32     printf("%d", (ans >> 1));
33     return 0;
34 }
T1

 

B 排列
文件名 输入文件 输出文件 时间限制 空间限制
perm.pas/c/cpp perm.in perm.out 1s 128MB
【题目描述】
小 G 喜欢玩排列。现在他手头有两个 n 的排列。n 的排列是由 0, 1, 2, ..., n − 1
这 n 的数字组成的。对于一个排列 p,Order(p) 表示 p 是字典序第 Order(p) 小的
排列(从 0 开始计数)。对于小于 n! 的非负数 x,P erm(x) 表示字典序第 x 小的
排列。
现在,小 G 想求一下他手头两个排列的和。两个排列 p 和 q 的和为 sum =
P erm((Order(p) + Order(q))%n!)。
【输入格式】
输入文件第一行一个数字 n,含义如题。
接下来两行,每行 n 个用空格隔开的数字,表示小 G 手头的两个排列。
【输出格式】
输出一行 n 个数字,用空格隔开,表示两个排列的和。
【样例输入 1】
2
0 1
1 0
【样例输出 1】
1 0
4
【样例输入 2】
3
1 2 0
2 1 0
【样例输出 2】
1 0 2
【数据范围】
1、2、3、4 测试点,1 ≤ n ≤ 10。
5、6、7 测试点,1 ≤ n ≤ 5000,保证第二个排列的 Order ≤ 105。
8、9、10 测试点,1 ≤ n ≤ 5000。

 

【题解】

康托展开:

一个序列的排名(从0开始计数) = Rank[n]*(n-1)!+Rank[n-1]*(n-2)!+….
其中Rank[n]表示n位置上的数字在未出现过的数字中的排行,并且从0开始计数。

 

我们先求出两个序列的康托展开式,相加

但是显然阶乘爆掉

于是我们只加rank数组

如果rank[i]这一位大于等于i,就按i进制进位

证明:

……rank[i] * (i - 1) ! + rank[i + 1] * i !……

若rank[i] > i

那么可分解为

rank[i]%i * (i - 1)! + rank[i]/i * i! + rank[i + 1]*i!

所以进位显然

mod n!的话,只需要忽略rank[i + 1]即可

推式子这一步,我开始想的是类似一遍找一遍插入排序,复杂度n^2

天宇哥哥的做法是  从n往前找,p从-1向上累计,遇到没有用过的p就标记为用过,同时rank[n]--

因为num[i + 1..n]求出后能得知num[i]能选哪一些数   也就是num[1...i]有哪一些数  从小到大枚举到对应排名即可

 

 1 #include <cstdio>
 2 #include <cstdlib>
 3 #include <cstring>
 4 #include <cstdlib>
 5 
 6 inline void read(int &x)
 7 {
 8     x = 0;char ch = getchar(), c = ch;
 9     while(ch < '0' || ch > '9')c = ch, ch = getchar();
10     while(ch <= '9' && ch >= '0')x = x * 10 + ch - '0', ch = getchar();
11     if(c == '-')x = -x;
12 }
13 
14 const int INF = 0x3f3f3f3f;
15 const int MAXN = 6000 + 10;
16 
17 int num1[MAXN], num2[MAXN];
18 int rank1[MAXN], rank2[MAXN];
19 int n, b[MAXN];
20 
21 int main()
22 {
23     read(n);
24     for(register int i = n;i >= 1;-- i) read(num1[i]);
25     for(register int i = n;i >= 1;-- i) read(num2[i]);
26     register int p;
27     for(register int i = 1;i <= n;++ i)
28     {
29         p = 0;
30         for(register int j = 1;j < i;++ j)if(num1[j] < num1[i]) ++ p;
31         rank1[i] += p;
32         p = 0;
33         for(register int j = 1;j < i;++ j)if(num2[j] < num2[i]) ++ p;
34         rank2[i] += p;
35         rank1[i] += rank2[i];
36         rank1[i + 1] += rank1[i]/i;
37         rank1[i] %= i;
38     }
39     rank1[n] %= n;
40     for(register int i = n;i >= 1;-- i)
41     {
42         p = -1;
43         while(rank1[i] >= 0)
44         {
45             ++ p;
46             if(!b[p])-- rank1[i];
47         }
48         b[p] = 1;
49         printf("%d ", p);
50     }
51     return 0;
52 }
T2

 

 

C 剪树枝
文件名 输入文件 输出文件 时间限制 空间限制
tree.pas/c/cpp tree.in tree.out 1s 128MB
【题目描述】
rzyz 有一棵苹果树。苹果树有 n 个节点(也就是苹果),n − 1 条边(也就是
树枝)。调皮的小 G 爬到苹果树上。他发现这棵苹果树上的苹果有两种:一种是黑
苹果,一种是红苹果。小 G 想要剪掉 k 条树枝,将整棵树分成 k + 1 个部分。他
想要保证每个部分里面有且仅有一个黑苹果。请问他一共有多少种剪树枝的方案?
【输入格式】
第一行一个数字 n,表示苹果树的节点(苹果)个数。
第二行一共 n − 1 个数字 p0, p1, p2, p3, ..., pn−2,pi 表示第 i + 1 个节点和 pi 节
点之间有一条边。注意,点的编号是 0 到 n − 1。
第三行一共 n 个数字 x0, x1, x2, x3, ..., xn−1。如果 xi 是 1,表示 i 号节点是黑
苹果;如果 xi 是 0,表示 i 号节点是红苹果。
【输出格式】
输出一个数字,表示总方案数。答案对 109 + 7 取模。
【样例输入 1】
3
0 0
0 1 1
【样例输出 1】
2
【样例输入 2】
6
0 1 1 0 4
1 1 0 0 1 0
【样例输出 2】
1
【样例输入 3】
10
0 1 2 1 4 4 4 0 8
0 0 0 1 0 1 1 0 0 1
【样例输出 3】
27
【数据范围】
对于 30% 的数据,1 ≤ n ≤ 10。
对于 60% 的数据,1 ≤ n ≤ 100。
对于 80% 的数据,1 ≤ n ≤ 1000。
对于 100% 的数据,1 ≤ n ≤ 105。
对于所有数据点,都有 0 ≤ pi ≤ n − 1,xi = 0 或 xi = 1。
特别地,60% 中、80% 中、100% 中各有一个点,树的形态是一条链。

 

【题解】

做过的第二道树形DP,第一道A了的树形DP。我对树形DP理解还不够深入,所以下面的题解大家自行斟酌,

抱着江信江疑的态度看

正确性请尤其注意需要剪掉的时候,和每一个dp[i][1],能否保证性质:每个连通块有且仅有一个黑点

dp[i][0]表示 i节点不能提供给父亲黑节点的方案数

dp[i][1]表示i节点 能提供给父亲黑节点的而方案书

初始:所有叶节点e,若为黑:dp[e][1] = 1,dp[e][0] = 1(可以切断与父节点连边);若为白:dp[e][1] = 0, dp[e][0] = 1

转移:

若i为黑色节点:

dp[i][1] = πdp[son(i)][0]  这个地方保证了每个连通分块最多有一个黑节点

dp[i][0] = dp[i][1] 即i为黑节点不给父亲黑节点的方案只能是减掉,相当于dp[i][1],保证每个连通分块至少有一个黑节点

上述两条性质,使dp[i][1]的方案保证有且仅有一个黑节点

若i为白色节点:

dp[i][1] = Σ(dp[j][1] * πdp[son(i)][0])  son(i)不含j,j也是i的一个儿子  这个就是一个选黑,另一些选白    保证dp[i][1]的方案有且仅有一个黑节点

dp[i][0] = πdp[son(i)][0] + dp[i][1]  即下面全是白,和能提供黑但减掉与父亲节点的边   

 

答案即为dp[i][1]

 

正确性我看了很久。。不知道对不对。。还请各位神犇指正

转移有奇淫技巧,见代码及注释

 

  1 #include <iostream>
  2 #include <cstdio>
  3 #include <cstring>
  4 #include <cstdlib>
  5 #define max(a, b) ((a) > (b) ? (a) : (b))
  6 
  7 inline void read(int &x)
  8 {
  9     x = 0;char ch = getchar();char c = ch;
 10     while(ch < '0' || ch > '9')c = ch, ch = getchar();
 11     while(ch <= '9' && ch >= '0')x = x * 10 + ch - '0', ch = getchar();
 12     if(c == '-')x = -x;
 13 }
 14 
 15 const int INF = 0X3f3f3f3f;
 16 const int MAXN = 200000 + 10;
 17 const int MOD = 1000000000 + 7;
 18 
 19 struct Edge
 20 {
 21     int u,v,next;
 22     Edge(int _u, int _v, int _next){u = _u;v = _v;next = _next;}
 23     Edge(){}
 24 }edge[MAXN << 1];
 25 
 26 int head[MAXN], cnt;
 27 
 28 inline void insert(int a, int b)
 29 {
 30     edge[++cnt] = Edge(a,b,head[a]);
 31     head[a] = cnt;
 32 }
 33 
 34 
 35 int n,color[MAXN],dp[2][MAXN],b[MAXN],fa[MAXN];
 36 
 37 /*
 38 若i为黑:
 39 dp[i][0] = dp[i][1]
 40 dp[i][1] = πdp[son][0]
 41  42 dp[i][0] = πdp[son][0]
 43 dp[i][1] = dp[i][1]
 44 若i为白:
 45 dp[i][0] = πdp[son][0] + dp[i][1]
 46 dp[i][1] = Σdp[son1][1]* πdp[son(不含son1)][0]
 47 
 48 可以用dp[i][0]记录 πdp[son][0]  最后判颜色+dp[i][1]
 49 dp[i][1]则记录 Σdp[son1][1]* πdp[son(不含son1)][0]
 50 递推做到On
 51 我们用a,b,c,d表示儿子节点,如果只有a,b,c,式子为:
 52 a1 * b2 * c2 + a2 * b1 * c2 + a2 * b2 * c1
 53 加入d后:
 54 (a1 * b2 * c2 + a2 * b1 * c2 + a2 * b2 * c1) *d2 + a2 * b2 * c2 * d1  
 55 其中a2 * b2 * c2可直接用dp[i][0]递推过程值更新 
 56 
 57 */
 58 
 59 void dfs(int u)
 60 {
 61     b[u] = 1;
 62     register int size = 0, sum = 0, sum2 = 0, ok = 1;
 63     dp[0][u] = 1;
 64     for(register int pos = head[u];pos;pos = edge[pos].next)
 65     {
 66         int v = edge[pos].v;
 67         if(b[v])continue; 
 68         fa[v] = u;
 69         ++ size;
 70         ok = 0;
 71         dfs(v);
 72         dp[1][u] = ((long long)dp[1][u] * dp[0][v]) % MOD;
 73         dp[1][u] += ((long long)dp[0][u] * dp[1][v]) % MOD;
 74         if(dp[1][u] >= MOD)dp[1][u] -= MOD;
 75         dp[0][u] = ((long long)dp[0][u] * dp[0][v]) % MOD;
 76     }
 77     if(ok)
 78     {
 79         if(color[u]) dp[1][u] = 1, dp[0][u] = 1;
 80         else dp[1][u] = 0, dp[0][u] = 1;
 81         return;
 82     }
 83     if(color[u]) dp[1][u] = dp[0][u];
 84     else 
 85     {
 86         dp[0][u] += dp[1][u];
 87         if(dp[0][u] >= MOD)dp[0][u] -= MOD;
 88     }
 89     return;
 90 }
 91 
 92 int main()
 93 {
 94     read(n);
 95     register int tmp1;
 96     for(register int i = 0;i < n - 1;++ i) read(tmp1), insert(i + 2, tmp1 + 1), insert(tmp1 + 1, i + 2);
 97     for(register int i = 0;i < n;++ i) read(color[i + 1]); 
 98     dfs(1);
 99     printf("%d", dp[1][1]);
100     return 0;
101 }
T3

 

posted @ 2017-08-17 21:33  嘒彼小星  阅读(199)  评论(0编辑  收藏  举报