洛谷P2912 [USACO08OCT]牧场散步Pasture Walking [2017年7月计划 树上问题 01]

P2912 [USACO08OCT]牧场散步Pasture Walking

题目描述

The N cows (2 <= N <= 1,000) conveniently numbered 1..N are grazing among the N pastures also conveniently numbered 1..N. Most conveniently of all, cow i is grazing in pasture i.

Some pairs of pastures are connected by one of N-1 bidirectional walkways that the cows can traverse. Walkway i connects pastures A_i and B_i (1 <= A_i <= N; 1 <= B_i <= N) and has a length of L_i (1 <= L_i <= 10,000).

The walkways are set up in such a way that between any two distinct pastures, there is exactly one path of walkways that travels between them. Thus, the walkways form a tree.

The cows are very social and wish to visit each other often. Ever in a hurry, they want you to help them schedule their visits by computing the lengths of the paths between 1 <= L_i <= 10,000 pairs of pastures (each pair given as a query p1,p2 (1 <= p1 <= N; 1 <= p2 <= N).

POINTS: 200

有N(2<=N<=1000)头奶牛,编号为1到W,它们正在同样编号为1到N的牧场上行走.为了方 便,我们假设编号为i的牛恰好在第i号牧场上.

有一些牧场间每两个牧场用一条双向道路相连,道路总共有N - 1条,奶牛可以在这些道路 上行走.第i条道路把第Ai个牧场和第Bi个牧场连了起来(1 <= A_i <= N; 1 <= B_i <= N),而它的长度 是 1 <= L_i <= 10,000.在任意两个牧场间,有且仅有一条由若干道路组成的路径相连.也就是说,所有的道路构成了一棵树.

奶牛们十分希望经常互相见面.它们十分着急,所以希望你帮助它们计划它们的行程,你只 需要计算出Q(1 < Q < 1000)对点之间的路径长度•每对点以一个询问p1,p2 (1 <= p1 <= N; 1 <= p2 <= N). 的形式给出.

输入输出格式

输入格式:
  • Line 1: Two space-separated integers: N and Q

  • Lines 2..N: Line i+1 contains three space-separated integers: A_i, B_i, and L_i

  • Lines N+1..N+Q: Each line contains two space-separated integers representing two distinct pastures between which the cows wish to travel: p1 and p2
输出格式:
  • Lines 1..Q: Line i contains the length of the path between the two pastures in query i.

输入输出样例

输入样例#1:
4 2 
2 1 2 
4 3 2 
1 4 3 
1 2 
3 2 
输出样例#1:
2 
7 

说明

Query 1: The walkway between pastures 1 and 2 has length 2.

Query 2: Travel through the walkway between pastures 3 and 4, then the one between 4 and 1, and finally the one between 1 and 2, for a total length of 7.

 

裸LCA,预处理的时候顺带求到根节点的路径长,答案为len[u] + len[v] - 2 * len[lca(va, vb)]

 

 1 #include <bits/stdc++.h>
 2 
 3 const int MAXN = 5000 + 10;
 4 
 5 inline void read(int &x)
 6 {
 7     x = 0;char ch = getchar();char c = ch;
 8     while(ch > '9' || ch < '0')c = ch, ch = getchar();
 9     while(ch <= '9' && ch >= '0')x = x * 10 + ch - '0', ch = getchar();
10     if(c == '-')x = -x;
11 }
12 
13 inline void swap(int &a, int &b)
14 {
15     int tmp = a;
16     a = b;
17     b = tmp;
18 }
19 
20 struct Edge{int u,v,w,next;}edge[MAXN >> 1];
21 int head[MAXN],root,cnt,deep[MAXN],len[MAXN],p[MAXN][20];
22 int n,m,tmp1,tmp2,tmp3;
23 bool b[MAXN];
24 
25 inline void insert(int a, int b, int c)
26 {
27     edge[++cnt] = {a,b,c,head[a]};
28     head[a] = cnt;
29 }
30 
31 void dfs(int u, int step)
32 {
33     for(int pos = head[u];pos;pos = edge[pos].next)
34     {
35         int v = edge[pos].v;
36         if(!b[v])
37         {
38             b[v] = true;
39             deep[v] = step + 1;
40             len[v] = len[u] + edge[pos].w;
41             p[v][0] = u;
42             dfs(v, step + 1);
43         }
44     }
45 }
46 
47 inline void yuchuli()
48 {
49     b[root] = true;
50     len[root] = 0;
51     deep[root] = 0;
52     dfs(root, 0);
53     for(int i = 1;(1 << i) <= n;i ++)
54     {
55         for(int j = 1;j <= n;j ++)
56         {
57             p[j][i] = p[p[j][i - 1]][i - 1];
58         }
59     }
60 }
61 
62 inline int lca(int va, int vb)
63 {
64     if(deep[va] < deep[vb])swap(va, vb);
65     int M = 0;
66     for(;(1 << M) <= n;M ++);
67     M --;
68     for(int i = M;i >= 0;i --)
69         if(deep[va] - (1 << i) >= deep[vb])
70             va = p[va][i];
71     if(va == vb)return va;
72     for(int i = M;i >= 0;i --)
73         if(p[va][i] != p[vb][i])
74         {
75             va = p[va][i];
76             vb = p[vb][i];
77         }
78     return p[va][0];
79 }
80 
81 int main()
82 {
83     read(n);read(m);
84     for(int i = 1;i < n;i ++)
85     {
86         read(tmp1);read(tmp2);read(tmp3);
87         insert(tmp1, tmp2, tmp3);
88         insert(tmp2, tmp1, tmp3);
89     }
90     root = 1;
91     yuchuli();
92     for(int i = 1;i <= m;i ++)
93     {
94         read(tmp1);read(tmp2);
95         printf("%d\n", len[tmp1] + len[tmp2] - 2 * len[lca(tmp1, tmp2)]);
96     }
97     return 0;
98 }

 

 

posted @ 2017-06-14 08:26  嘒彼小星  阅读(210)  评论(0编辑  收藏  举报