洛谷P1757 通天之分组背包 [2017年4月计划 动态规划06]
P1757 通天之分组背包
题目背景
直达通天路·小A历险记第二篇
题目描述
自01背包问世之后,小A对此深感兴趣。一天,小A去远游,却发现他的背包不同于01背包,他的物品大致可分为k组,每组中的物品相互冲突,现在,他想知道最大的利用价值是多少。
输入输出格式
输入格式:两个数m,n,表示一共有n件物品,总重量为m
接下来n行,每行3个数ai,bi,ci,表示物品的重量,利用价值,所属组数
输出格式:一个数,最大的利用价值
输入输出样例
输入样例#1:
input: 45 4 10 10 1 10 5 1 5 20 2 50 400 2
输出样例#1:
output:30
说明
1<=m<=1000 1<=n<=1000 组数t<=100
一直以为背包问题最后出结果要扫一遍f,今天才发现直接输出f[容积]就够了。。
分组背包其实很简单,每一个组看成一个物品就是一个01背包。
然后在每个组里选加进去之后得到的最大值就可以。
我用了vector存每个组,其实完全可以用二维数组,[i][0]来存个数。
最好别用vector(尽管我用了),容易被卡
#include <iostream> #include <cstdio> #include <cstdlib> #include <algorithm> #include <cstring> #include <vector> using namespace std; #define max(a,b) ((a) > (b) ? (a) : (b)) #define min(a,b) ((a) < (b) ? (a) : (b)) inline int read() { int x = 0;char ch = getchar();char c = ch; while(ch > '9' || ch < '0')c = ch,ch = getchar(); while(ch <= '9' && ch >= '0')x = x * 10 + ch - '0',ch = getchar(); if(c == '-')return -1 * x; return x; } const int INF = 99999999999; int n,m,groupn; vector<int> group[100 + 10]; int f[1000 + 10]; int w[1000 + 10]; int v[1000 + 10]; int minn[100 + 10]; int main() { m = read();n = read(); for(int i = 1;i <= n;i ++) { int temp; v[i] = read();w[i] = read();temp = read(); group[temp].push_back(i); minn[temp] = min(minn[temp], v[i]); groupn = max(groupn, temp); } for(int i = 1;i <= groupn;i ++) { int size = group[i].size() - 1; for(int j = m;j >= minn[i];j --) { for(int k = 0;k <= size;k ++) { if(j >= v[group[i][k]]) f[j] = max(f[j],f[j - v[group[i][k]]] + w[group[i][k]]); } } } printf("%d", f[m]); return 0; }