canal架构原理
-
canal架构设计
说明:
- server代表一个canal运行实例,对应于一个jvm
- instance对应于一个数据队列 (1个server对应1..n个instance)
instance模块:
- eventParser (数据源接入,模拟slave协议和master进行交互,协议解析)
- eventSink (Parser和Store链接器,进行数据过滤,加工,分发的工作)
- eventStore (数据存储)
- metaManager (增量订阅&消费信息管理器)
EventParser
整个parser过程大致可分为几部:
- Connection获取上一次解析成功的位置(如果第一次启动,则获取初始制定的位置或者是当前数据库的binlog位点)
- Connection建立连接,发生BINLOG_DUMP命令
- Mysql开始推送Binary Log
- 接收到的Binary Log通过Binlog parser进行协议解析,补充一些特定信息
- 传递给EventSink模块进行数据存储,是一个阻塞操作,直到存储成功
- 存储成功后,定时记录Binary Log位置
EventSink设计
说明:
- 数据过滤:支持通配符的过滤模式,表名,字段内容等
- 数据路由/分发:解决1:n (1个parser对应多个store的模式)
- 数据归并:解决n:1 (多个parser对应1个store)
- 数据加工:在进入store之前进行额外的处理,比如join
1 数据1:n业务 :
为了合理的利用数据库资源, 一般常见的业务都是按照schema进行隔离,然后在mysql上层或者dao这一层面上,进行一个数据源路由,屏蔽数据库物理位置对开发的影响,阿里系主要是通过cobar/tddl来解决数据源路由问题。 所以,一般一个数据库实例上,会部署多个schema,每个schema会有由1个或者多个业务方关注。
2 数据n:1业务:
同样,当一个业务的数据规模达到一定的量级后,必然会涉及到水平拆分和垂直拆分的问题,针对这些拆分的数据需要处理时,就需要链接多个store进行处理,消费的位点就会变成多份,而且数据消费的进度无法得到尽可能有序的保证。 所以,在一定业务场景下,需要将拆分后的增量数据进行归并处理,比如按照时间戳/全局id进行排序归并.
EventStore设计
目前实现了Memory内存、本地file存储以及持久化到zookeeper以保障数据集群共享。
Memory内存的RingBuffer设计:定义了3个cursor
- Put : Sink模块进行数据存储的最后一次写入位置
- Get : 数据订阅获取的最后一次提取位置
- Ack : 数据消费成功的最后一次消费位置
借鉴Disruptor的RingBuffer的实现,将RingBuffer拉直来看:
实现说明:
- Put/Get/Ack cursor用于递增,采用long型存储
- buffer的get操作,通过取余或者与操作。(与操作: cusor & (size – 1) , size需要为2的指数,效率比较高)
Instance设计
instance代表了一个实际运行的数据队列,包括了EventPaser,EventSink,EventStore等组件。
抽象了CanalInstanceGenerator,主要是考虑配置的管理方式:1. manager方式: 和你自己的内部web console/manager系统进行对接。(alibaba内部使用方式)
2. spring方式:基于spring xml + properties进行定义,构建spring配置.
- spring/memory-instance.xml 所有的组件(parser , sink , store)都选择了内存版模式,记录位点的都选择了memory模式,重启后又会回到初始位点进行解析。特点:速度最快,依赖最少
- spring/file-instance.xml 所有的组件(parser , sink , store)都选择了基于file持久化模式,注意,不支持HA机制.支持单机持久化
- spring/default-instance.xml 所有的组件(parser , sink , store)都选择了持久化模式,目前持久化的方式主要是写入zookeeper,保证数据集群共享. 支持HA
- spring/group-instance.xml 主要针对需要进行多库合并时,可以将多个物理instance合并为一个逻辑instance,提供客户端访问。场景:分库业务。 比如产品数据拆分了4个库,每个库会有一个instance,如果不用group,业务上要消费数据时,需要启动4个客户端,分别链接4个instance实例。使用group后,可以在canal server上合并为一个逻辑instance,只需要启动1个客户端,链接这个逻辑instance即可.
Server设计
server代表了一个canal的运行实例,为了方便组件化使用,特意抽象了Embeded(嵌入式) / Netty(网络访问)的两种实现:
- Embeded : 对latency和可用性都有比较高的要求,自己又能hold住分布式的相关技术(比如failover)
- Netty : 基于netty封装了一层网络协议,由canal server保证其可用性,采用的pull模型,当然latency会稍微打点折扣,不过这个也视情况而定。
增量订阅/消费设计
具体的协议格式,可参见:CanalProtocol.proto
get/ack/rollback协议介绍:- Message getWithoutAck(int batchSize),允许指定batchSize,一次可以获取多条,每次返回的对象为Message,包含的内容为:
- a. batch id 唯一标识
- b. entries 具体的数据对象,对应的数据对象格式:EntryProtocol.proto
- void rollback(long batchId),顾命思议,回滚上次的get请求,重新获取数据。基于get获取的batchId进行提交,避免误操作
- void ack(long batchId),顾命思议,确认已经消费成功,通知server删除数据。基于get获取的batchId进行提交,避免误操作
- canal的get/ack/rollback协议和常规的jms协议有所不同,允许get/ack异步处理,比如可以连续调用get多次,后续异步按顺序提交ack/rollback,项目中称之为流式api.
- 流式api设计的好处:
- get/ack异步化,减少因ack带来的网络延迟和操作成本 (99%的状态都是处于正常状态,异常的rollback属于个别情况,没必要为个别的case牺牲整个性能)
- get获取数据后,业务消费存在瓶颈或者需要多进程/多线程消费时,可以不停的轮询get数据,不停的往后发送任务,提高并行化. (作者在实际业务中的一个case:业务数据消费需要跨中美网络,所以一次操作基本在200ms以上,为了减少延迟,所以需要实施并行化)
流式api设计:
- 每次get操作都会在meta中产生一个mark,mark标记会递增,保证运行过程中mark的唯一性
- 每次的get操作,都会在上一次的mark操作记录的cursor继续往后取,如果mark不存在,则在last ack cursor继续往后取
- 进行ack时,需要按照mark的顺序进行数序ack,不能跳跃ack. ack会删除当前的mark标记,并将对应的mark位置更新为last ack cusor
- 一旦出现异常情况,客户端可发起rollback情况,重新置位:删除所有的mark, 清理get请求位置,下次请求会从last ack cursor继续往后取
数据格式
canal采用protobuff:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Entry
Header
logfileName [binlog文件名]
logfileOffset [binlog position]
executeTime [发生的变更]
schemaName
tableName
eventType [insert/update/delete类型]
entryType [事务头BEGIN/事务尾END/数据ROWDATA]
storeValue [
byte
数据,可展开,对应的类型为RowChange]
RowChange
isDdl [是否是ddl变更操作,比如create table/drop table]
sql [具体的ddl sql]
rowDatas [具体insert/update/delete的变更数据,可为多条,
1
个binlog event事件可对应多条变更,比如批处理]
beforeColumns [Column类型的数组]
afterColumns [Column类型的数组]
Column
index
sqlType [jdbc type]
name [column name]
isKey [是否为主键]
updated [是否发生过变更]
isNull [值是否为
null
]
value [具体的内容,注意为文本]
canal-message example:
比如数据库中的表:
1
2
3
4
5
6
7
8
9
mysql> select * from person;
+----+------+------+------+
| id | name | age | sex |
+----+------+------+------+
|
1
| zzh |
10
| m |
|
3
| zzh3 |
12
| f |
|
4
| zzh4 |
5
| m |
+----+------+------+------+
3
rows
in
set
(
0.00
sec)
更新一条数据(update person set age=15 where id=4):
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
****************************************************
* Batch Id: [
2
] ,count : [
3
] , memsize : [
165
] , Time :
2016
-
09
-
07
15
:
54
:
18
* Start : [mysql-bin.
000003
:
6354
:
1473234846000
(
2016
-
09
-
07
15
:
54
:
06
)]
* End : [mysql-bin.
000003
:
6550
:
1473234846000
(
2016
-
09
-
07
15
:
54
:
06
)]
****************************************************
================> binlog[mysql-bin.
000003
:
6354
] , executeTime :
1473234846000
, delay : 12225ms
BEGIN ----> Thread id:
67
----------------> binlog[mysql-bin.
000003
:
6486
] , name[canal_test,person] , eventType : UPDATE , executeTime :
1473234846000
, delay : 12225ms
id :
4
type=
int
(
11
)
name : zzh4 type=varchar(
100
)
age :
15
type=
int
(
11
) update=
true
sex : m type=
char
(
1
)
----------------
END ----> transaction id:
308
================> binlog[mysql-bin.
000003
:
6550
] , executeTime :
1473234846000
, delay : 12240ms
HA机制设计
canal的HA分为两部分,canal server和canal client分别有对应的ha实现:
- canal server: 为了减少对mysql dump的请求,不同server上的instance要求同一时间只能有一个处于running,其他的处于standby状态.
- canal client: 为了保证有序性,一份instance同一时间只能由一个canal client进行get/ack/rollback操作,否则客户端接收无法保证有序。
整个HA机制的控制主要是依赖了zookeeper的几个特性,watcher和EPHEMERAL节点(和session生命周期绑定),可以看下我之前zookeeper的相关文章。
Canal Server:
大致步骤:
- canal server要启动某个canal instance时都先向zookeeper进行一次尝试启动判断 (实现:创建EPHEMERAL节点,谁创建成功就允许谁启动)
- 创建zookeeper节点成功后,对应的canal server就启动对应的canal instance,没有创建成功的canal instance就会处于standby状态
- 一旦zookeeper发现canal server A创建的节点消失后,立即通知其他的canal server再次进行步骤1的操作,重新选出一个canal server启动instance.
- canal client每次进行connect时,会首先向zookeeper询问当前是谁启动了canal instance,然后和其建立链接,一旦链接不可用,会重新尝试connect.
- Canal Client的方式和canal server方式类似,也是利用zokeeper的抢占EPHEMERAL节点的方式进行控制.
HA配置架构图(举例)如下所示:
canal其他链接方式
canal还有几种连接方式:
1. 单连
2. 两个client+两个instance+1个mysql
当mysql变动时,两个client都能获取到变动
3. 一个server+两个instance+两个mysql+两个client
4. instance的standby配置
整体架构
从整体架构上来说canal是这种架构的(canal中没有包含一个运维的console web来对接,但要运用于分布式环境中肯定需要一个Manager来管理):
一个总体的manager system对应于n个Canal Server(物理上来说是一台服务器), 那么一个Canal Server对应于n个Canal Instance(destinations). 大体上是三层结构,第二层也需要Manager统筹运维管理。
那么随着Docker技术的兴起,是否可以试一下下面的架构呢?
- 一个docker中跑一个instance服务,相当于略去server这一层的概念。
- Manager System中配置一个instance,直接调取一个docker发布这个instance,其中包括向这个instance发送配置信息,启动instance服务.
- instance在运行过程中,定时刷新binlog filename+ binlog position的信息至zk。
- 如果一个instance出现故障,instance本身报错或者zk感知此node消失,则根据相应的信息,比如上一步保存的binlog filename+binlog position重新开启一个docker服务,当然这里可以适当的加一些重试机制。
- 当要更新时,类似AB test, 先关闭一个docker,然后开启新的已更新的替换,循序渐进的进行。
- 当涉及到分表分库时,多个物理表对应于一个逻辑表,可以将结果存于一个公共的模块(比如MQ),或者单独存取也可以,具体情况具体分析
- 存储可以参考canal的多样化:内存,文件,zk,或者加入至MQ中
- docker由此之外的工具管理,比如kubernetes
- 也可以进一步添加HA的功能,两个docker对应一个mysql,互为主备,类似Canal的HA架构。如果时效性不是贴别强的场景,考虑到成本,此功能可以不采用。
总结
这里总结了一下Canal的一些点,仅供参考:
- 原理:模拟mysql slave的交互协议,伪装自己为mysql slave,向mysql master发送dump协议;mysql master收到dump请求,开始推送binary log给slave(也就是canal);解析binary log对象(原始为byte流)
- 重复消费问题:在消费端解决。
- 采用开源的open-replicator来解析binlog
- canal需要维护EventStore,可以存取在Memory, File, zk
- canal需要维护客户端的状态,同一时刻一个instance只能有一个消费端消费
- 数据传输格式:protobuff
- 支持binlog format 类型:statement, row, mixed. 多次附加功能只能在row下使用,比如otter
- binlog position可以支持保存在内存,文件,zk中
- instance启动方式:rpc/http; 内嵌
- 有ACK机制
- 无告警,无监控,这两个功能都需要对接外部系统
- 方便快速部署。