并发编程 - 线程同步(四)之原子操作Interlocked详解一
上一章我们了解了原子操作Interlocked类的设计原理及简单介绍,今天我们将对Interlocked的使用进行详细讲解。
在此之前我们先学习一个概念——原子操作。
01、Read方法
该方法用于原子的读取64位值,有分别针对long类型和ulong类型的两个重载方法;
对于64位系统,64位数据类型的读取本身就是原子操作;而对于32位系统,64位数据类型的读取需要至少两个原子指令,因此在32位系统可以通过Read方法对64位数据类型进行原子读取。
用法也很简单,示例如下:
private static long _readValue = 0;
public static void ReadRun()
{
var thread = new Thread(ModifyReadValue);
thread.Start();
Thread.Sleep(100);
var value = Interlocked.Read(ref _readValue);
Console.WriteLine("原子读取long类型变量: " + value);
}
static void ModifyReadValue()
{
_readValue = 88;
Console.WriteLine("修改long类型变量: " + _readValue);
}
运行结果如下:
因为系统环境原因无法模拟出32位系统效果,因此这里只是给了个简单使用示例。
02、Increment方法
该方法用于原子的递增指定的变量,并返回递增后的新值。该方法有4个重载方法,分别为long、ulong、int和uint四种数据类型;该方法适用于多线程环境中需要安全递增变量的场景,如计数器、资源管理等。
对于加法操作,无论是i+1,还是i++或++i,都不是线程安全的,最终可能会生成3条CPU指令,整个操作过程大致如下:
1.将 i 的值加载到寄存器,即从内存中读取i;
2.将寄存器中值加1,即i值加1;
3.最后将寄存器中值回写到i,即完成i值的变更;
而在这编码层面为1行代码,而CPU层面为3行指令的操作中,随时都有可能被线程调度器打断,而导致其他线程同时对i进行操作,最终导致竞争条件,最后数据错乱。
下面我们来举个例子,启动100个线程,分别对一个共享变量进行1000次递增1,最后打印出共享变量,运行这个示例9次观察每次运行结果,代码如下:
private static long _incrementValue = 0;
public static void IncrementRun()
{
//运行9次测试,观察每次结果
for (var i = 1; i < 10; i++)
{
//启动100个线程,对变量进行递增
var threads = new Thread[100];
for (var j = 0; j < threads.Length; j++)
{
threads[j] = new Thread(ModifyIncrementValue);
threads[j].Start();
}
//等待所有线程执行完成
foreach (var thread in threads)
{
thread.Join();
}
//最后打印结果
Console.WriteLine($"第 {i} 运行结果: {_incrementValue}");
_incrementValue = 0;
}
}
static void ModifyIncrementValue()
{
for (var i = 0; i < 1000; i++)
{
++_incrementValue;
}
}
先看下执行结果:
可以发现每次的运行结果都不相同,并且结果也不对。这就是因为++i操作并不是原子操作,是线程不安全的。
只需要把上面代码:
++_incrementValue;
改为:
Interlocked.Increment(ref _incrementValue);
即可解决上面的问题,修改过后,我们再来看看执行结果:
03、Decrement方法
该方法用于原子的递减指定的变量,并返回递减后的新值。该方法同样有4个重载方法,分别为long、ulong、int和uint四种数据类型;
该方法和Increment方法基本一样,区别就是一个是递增一个是递减,因此用法可以直接参考Increment方法,这里就不做详细讲解了。
04、Add方法
该方法用于原子的对两个变量求和,将第一个变量替换为两者和,并返回操作后第一个变量的新值。该方法同样有4个重载方法,分别为long、ulong、int和uint四种数据类型;
虽然这个方法叫求和是加法,但是只需要把第2个参数变为负数,既可以实现减法。简单来说该方法可以实现原子的对两个变量求和与求差。
上面Increment方法和Decrement方法,只能对变量每次进行递增递减1,而能随意加减,可以通过Add方法实现两个变量进行加减。
下面我们用代码实现累加和累减示例用来说明Add使用方法,就不展示线程安全差异了,可以参考Increment方法中的示例,自己写一个线程不安全的示例。
private static long _addValue = 0;
public static void AddRun()
{
for (var j = 0; j < 1000; j++)
{
//_addValue =_ addValue + j;
Interlocked.Add(ref _addValue, j);
}
Console.WriteLine($"累加结果: {_addValue}");
_addValue = 0;
for (var j = 0; j < 1000; j++)
{
//_addValue =_ addValue - j;
Interlocked.Add(ref _addValue, -j);
}
Console.WriteLine($"累减结果: {_addValue}");
}
执行结果如下:
注:测试方法代码以及示例源码都已经上传至代码库,有兴趣的可以看看。https://gitee.com/hugogoos/Planner
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 本地部署 DeepSeek:小白也能轻松搞定!
· 传国玉玺易主,ai.com竟然跳转到国产AI
· 自己如何在本地电脑从零搭建DeepSeek!手把手教学,快来看看! (建议收藏)
· 我们是如何解决abp身上的几个痛点
· 如何基于DeepSeek开展AI项目