Loading

测试记录

轻量化神经网络测试

尝试训练100张640x480大小的图片

网络模型 Time(s) Images/s
Openpose(VGG-19) 36.4 2.75
Openpose(MobileNet v1) 4.2 23.94

image-20220329174525488

尝试训练100张224x224大小的图片

网络模型 Time(s) Images/s
Openpose(VGG-19) 10.45 9.57
Openpose(MobileNet v1) 1.9 53.68

image-20220329185221931

在224x224分辨率图像输入下网络的参数量和运算量

网络模型 参数量(Million) GFLOPs
Openpose(VGG-19) 52.31 50.41
Openpose(MobileNet v1) 2.88 50.41

image-20220329183430470

使用验证集(Val )进行验证

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets= 20 ] = 0.400
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets= 20 ] = 0.660
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets= 20 ] = 0.407
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.338
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.494
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 20 ] = 0.462
 Average Recall     (AR) @[ IoU=0.50      | area=   all | maxDets= 20 ] = 0.698
 Average Recall     (AR) @[ IoU=0.75      | area=   all | maxDets= 20 ] = 0.476
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.359
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.605
posted @ 2023-01-22 20:12  SurpassHR  阅读(62)  评论(0)    收藏  举报