特征抽取: sklearn.feature_extraction.DictVectorizer

sklearn.featture_extraction.DictVectorizer:
  将特征与值的映射字典组成的列表转换成向量。
  DictVectorizer通过使用scikit-learn的estimators,将特征名称与特征值组成的映射字典构成的列表转换成Numpy数组或者Scipy.sparse矩阵。
  当特征的值是字符串时,这个转换器将进行一个二进制One-hot编码。One-hot编码是将特征所有可能的字符串值构造成布尔型值。例如: 特征f有一个值ham,一个值spam,转换后会变成两个特征f=ham和f=spam。
  注意,转换器只会将字符串形式的特征值转换成One-hot编码,数值型的不会转换。
  一个字典中样本没有的特征在结果矩阵中的值是0.

构造参数:
  class sklearn.feature_extraction.DictVectorizer(dtype=<class‘numpy.float64’>, separator=’=’, sparse=True, sort=True)

  dtype:callable, 可选参数, 默认为float。特征值的类型,传递给Numpy.array或者Scipy.sparse矩阵构造器作为dtype参数。
  separator: string, 可选参数, 默认为"="。当构造One-hot编码的特征值时要使用的分割字符串。分割传入字典数据的键与值的字符串,生成的字符串会作为特征矩阵的列名。
  sparse: boolearn, 可选参数,默认为True。transform是否要使用scipy产生一个sparse矩阵。DictVectorizer的内部实现是将数据直接转换成sparse矩阵,如果sparse为False, 再把sparse矩阵转换成numpy.ndarray型数组。
  sort:boolearn,可选参数,默认为True。在拟合时是否要多feature_names和vocabulary_进行排序。

属性:
  vocabulary_: 特征名称和特征列索引的映射字典。
  feature_names_: 一个包含所有特征名称的,长度为特征名称个数的列表。
方法:
  fit(X,y=None): 计算出转换结果中feature name与 列索引之间的对照字典vocabulary_,同时会计算出特征名称列表 feature_names_。这里的参数y没有任何作用。
  fit_transform(X,y=None): 包含fit函数的功能,并且会将X转换成矩阵。
  get_feature_names(): 返回feature_names_
  get_params(deep=True): 返回当前DictVectorizer对象的构造参数。
  inverse_transform(X[,dict_type]): 将矩阵还原成特征字典列表。还原出来的字典跟原数据并不是完全一样。传入的X必须是这个DictVectorizer经过transform或者fit_transform产生的X。
  restrict(support, indicies=False): 根据传入的support参数,对特征矩阵进行筛选。
  set_params(**params): 设置DictVectorizer的参数
  transform(X): 将X转换为numpy.ndarray或者Scipy.sparse

   

使用样例:

    from sklearn.feature_extraction import DictVectorizer
 
    # 设置sparse=False获得numpy ndarray形式的结果
    v = DictVectorizer(sparse=False)
    D = [{"foo": 1, "bar": 2}, {"foo": 3, "baz": 1}]
 
    # 对字典列表D进行转换,转换成特征矩阵
    X = v.fit_transform(D)
    # 特征矩阵的行代表数据,列代表特征,0表示该数据没有该特征
    print(X)
    # 获取特征列名
    print(v.get_feature_names())
 
    # inverse_transform可以将特征矩阵还原成原始数据
    print(v.inverse_transform(X) == D)
 
    # 直接进行转换,不先进行拟合的话,无法识别新的特征
    print(v.transform([{"foo": 4, "unseen_feature": 3}]))

 

输出:

[[2. 0. 1.]
 [0. 1. 3.]]
['bar', 'baz', 'foo']
True
[[0. 0. 4.]]

 

配合特征选择:

    from sklearn.feature_selection import SelectKBest, chi2
    # 得到一个筛选器,使用卡方统计筛选出最好的2个特征
    support = SelectKBest(chi2, k=2).fit(X, [0, 1])
 
    # 进行筛选,筛选的结果会自动覆盖原有的特征矩阵
    print(v.restrict(support.get_support()))
    print(v.get_feature_names())

 

输出:

DictVectorizer(dtype=<class 'numpy.float64'>, separator='=', sort=True,
        sparse=False)
['bar', 'foo']

 

posted @ 2019-03-24 23:29  桑胡  阅读(4354)  评论(0编辑  收藏  举报