【结构识别】Reconstructing propagation networks with natural diversity and identifying hidden sources

文章百度网盘链接 提取码:0724
文章补充材料百度网盘链接 提取码:0724

压缩感知

从观测数据\(Y\)和已知观测矩阵\(\Phi\)来重构稀疏信号\(X\)

\[Y=\Phi \cdot X \tag{1} \]

可通过解决一下凸优化问题来实现重构

\[\min\mid\mid\mathbf{X}\mid\mid_1\quad\mathrm{subject~to}\quad\mathbf{Y}=\Phi\cdot\mathbf{X}, \]

其中\(\mid\mid X\mid\mid_1=\sum_{i=1}^N\mid X_i\mid\)\(\Phi\)满足RIP性质。

本文的目标是提出一个框架将重构传播网络问题转化为方程(1)

重构框架

节点状态

\[S_{i}(t)=\left\{\begin{array}{ll}0,&\text{susceptible;}\\1,&\text{infected.}\end{array}\right.\tag{3} \]

SIS模型动力学:

\[P_{i}^{01}(t)=1-(1-\lambda_{i})^{\sum_{j=1,j\neq i}^{N}a_{ij}S_{j}(t)},\tag{4} \]

转化为

\[\text{ln}[1-P_i^{01}(t)]=\ln(1-\lambda_i)\cdot\sum_{j=1,j\neq i}^Na_{ij}\mathcal{S}_j(t).\tag{5} \]

主要的困难是不能直接从节点状态得到感染概率\(P_i^{01}\),我们使用被感染的频率估计概率。首先,我们假设节点\(i\)的邻居集\(\Gamma_i\)已知,邻居节点\(t\)时刻状态\(S_{\Gamma_i}(t) \equiv \{S_1(t),S_2(t),\cdots,S_{k_i}(t)\}\),我们只需要使用\(S_i(t)=0\)和下一时刻\(S_i(t+1)\)来估计感染概率。如果汉明距离\(H[S_{\Gamma_i}(t_1),S_{\Gamma_i}(t_2)]=0\)\(S_i(t_1)=S_i(t_2)=0\),则下一时刻的状态\(S_i(t_1+1)\)\(S_i(t_2+1)\)可视为伯努力实验,即两次独立重复的实验。根据大数定律,

\[\lim_{l\to\infty}\frac1l\sum_{\nu=1}^lS_i(t_\nu+1)\to P_i^{01}(\hat{t}_\alpha),\quad\forall t_\nu,S_i(t_\nu)=0, H[S_{\Gamma_i}(\hat{t}_\alpha),S_{\Gamma_i}(t_\nu)]=0. \]

对上述方程的一个更直观的理解是,如果节点\(i\)的邻居的状态保持不变,那么节点\(i\)在整个时间段内被其邻居感染次数的比例将接近实际的感染概率\(P_{01}\)

然而节点\(i\)的邻居集是未知且需推断的,一种策略是将邻居集扩展除\(i\)的全部节点。

\[\mathrm{S}_{-i}(t) \equiv \{\mathrm{S}_{1}(t),\mathrm{S}_{2}(t), \ldots ,\mathrm{S}_{i-1}(t),\mathrm{S}_{i+1}(t), \ldots ,\mathrm{S}_{N}(t)\}. \]

如果汉明距离\(H[S_{-i}(t_1),S_{-i}(t_2)]=0\),条件\(H[S_{\Gamma_i}(t_1),S_{\Gamma_i}(t_2)]=0\)可以保证。同样,

\[\lim_{l\to\infty}\frac1l\sum_{\nu=1}^lS_i(t_\nu+1)\to P_i^{01}(\hat{t}_\alpha),\quad\forall t_\nu,S_i(t_\nu)=0,\quad H[S_{-i}(\hat{t}_\alpha),S_{-i}(t_\nu)]=0. \]

因此,节点\(i\)\(\hat{t}_{\alpha}\)上的感染概率\(P_i^{01}(\hat{t}_\alpha)\)可以通过平均其与\(\hat{t}_{\alpha}\)相关的其他节点串之间的零归一化汉明距离相关的状态来评估。事实上,找到两个具有绝对零汉明距离的字符串是不可能的。因此,我们设置了一个阈值\(\Delta\),以便选择合适的字符串来近似大数定律,即

\[\frac1l\sum_{\nu=1}^{l\gg1}S_i(t_\nu+1)~\simeq~\frac1l\sum_{\nu=1}^{l\gg1}P_i^{01}(t_\nu),~\forall~t_\nu,S_i(t_\nu)=0,~H[S_{-i}(\hat{t}_\alpha),S_{-i}(t_\nu)]<\Delta,\tag{14} \]

​ 其中\(S_{-i}(\hat{t}_\alpha)\)作为一个与其他时刻\(S_{-i}(t)\)比较的基\(\frac1l\sum_{\nu=1}^{l\gg1}P_i^{01}(t_\nu)~\simeq~P_i^{01}(\hat{t}_\alpha)\)。由于汉明距离\(H[S_{-i}(\hat{t}_\alpha),S_{-i}(t_\nu)]\neq0\),因此我们通过对\(P_i^{01}(t_v)\)取平均来获得\(P_i^{01}(\hat{t}_\alpha)\),得到方程(14)的右边。我们记\(\langle S_i(\hat{t}_\alpha+1)\rangle = \frac1l\sum_{\nu=1}^{l\gg1}S_i(t_\nu+1)\)\(\langle P_i^{01}(\hat{t}_\alpha)\rangle=\frac1l\sum_{\nu=1}^{l\gg1}P_i^{01}(t_\nu)\)

对方程(5)两边取方程(14)限制的时间t平均得,\(\langle\text{ln}[1-P_i^{01}(t)]\rangle=\ln(1-\lambda_i)\sum_{j=1,j\neq i}^Na_{ij}\langle S_j(t)\rangle\)。当\(\lambda_i\)足够小且波动小时,可以证明\(\langle\text{ln}[1-P_i^{01}(t)]\rangle\simeq\text{ln}[1-\langle P_i^{01}(t)\rangle]\)\(\textcolor{blue}{看补充材料Fig.10和Note.8}\))。用\(\langle S_i(\hat{t}_\alpha+1)\rangle\)代替\(\langle P_i^{01}(\hat{t}_\alpha)\rangle\)

\[\text{ln}[1-\langle\mathcal{S}_i(\hat{t}_\alpha+1)\rangle] \simeq \ln(1-\lambda_i)\cdot\sum_{j=1,j\neq i}^Na_{ij}\langle\mathcal{S}_j(\hat{t}_\alpha)\rangle. \]

虽然上述过程产生了一个方程,可以连接任意节点i的链接与节点的可观测状态,但单个方程并不包含关于网络的足够结构信息。我们的第二步是推导出CST所需的足够数量的线性无关方程来重建局部连接结构。为了实现这一点,我们从一个由\(T_{base}\)表示的集合中选择若干时间实例的基字符串,其中每对字符串都满足

\[H[S_{-i}(\hat{t}_\beta),S_{-i}(\hat{t}_\alpha)]>\Theta,\quad\forall\hat{t}_\alpha,\hat{t}_\beta\in T_{\mathrm{base}}, \]

其中\(\hat{t}_\alpha\)\(\hat{t}_\beta\)对应于时间序列中两个基字符串的时间实例,\(\Theta\)是一个阈值。对于每个字符串,我们重复建立节点状态和连接之间关系的过程,得到方程(15)中一组不同\(\hat{t}_\alpha\)值的方程,如矩阵形式(方程(6))所述。结合四种类型的网络,SIS和CP模型动力学的成功率对阈值\(\Delta\)\(\Theta\)的依赖性见\(\textcolor{blue}{补充材料图11、12和补充说明8}\)

最终得到重构方程组(6)

\[\begin{aligned} \begin{bmatrix}\text{ln}[1-\langle S_i(\hat{t}_1+1)\rangle]\\\text{ln}[1-\langle S_i(\hat{t}_2+1)\rangle]\\\vdots\\\text{ln}[1-\langle S_i(\hat{t}_m+1)\rangle]\end{bmatrix} =\begin{bmatrix}\langle\mathrm{S}_1(\hat{t}_1)\rangle&\cdots&\langle\mathrm{S}_{i-1}(\hat{t}_1)\rangle&\langle\mathrm{S}_{i+1}(\hat{t}_1)\rangle&\cdots&\langle\mathrm{S}_N(\hat{t}_1)\rangle\\\langle\mathrm{S}_1(\hat{t}_2)\rangle&\cdots&\langle\mathrm{S}_{i-1}(\hat{t}_2)\rangle&\langle\mathrm{S}_{i+1}(\hat{t}_2)\rangle&\cdots&\langle\mathrm{S}_N(\hat{t}_2)\rangle\\\vdots&\vdots&\vdots&\vdots&\vdots&\vdots\\\langle\mathrm{S}_1(\hat{t}_m)\rangle&\cdots&\langle\mathrm{S}_{i-1}(\hat{t}_m)\rangle&\langle\mathrm{S}_{i+1}(\hat{t}_m)\rangle&\cdots&\langle\mathrm{S}_N(\hat{t}_m)\rangle\end{bmatrix} \times\begin{bmatrix}\ln(1-\lambda_i)a_{i1}\\\vdots\\\ln(1-\lambda_i)a_{i,i-1}\\\ln(1-\lambda_i)a_{i,i+1}\\\vdots\\\ln(1-\lambda_i)a_{iN}\end{bmatrix}, \end{aligned}\tag{6} \]

CP模型动力学:

\[P_i^{01}(t)=\lambda_i\sum_{j=1,j\neq i}^Na_{ij}S_j(t)/k_i,\tag{7} \]

类似与SIS动力学,我们有

\[\langle S_i(\hat{t}_\alpha+1)\rangle \simeq \langle P_i^{01}(\hat{t}_\alpha)\rangle=\frac{\lambda_i\sum a_{ij}\langle S_j(\hat{t}_\alpha)\rangle}{k_i}.\tag{8} \]

然后我们使用一个适当的阈值\(\Theta\)选择一系列的基本字符串建立一组方程,用矩阵形式表示\(\mathbf{Y}_{m\times1}=\mathbf{\Phi}_{m\times(N-1)}\cdot\mathbf{X}_{(N-1)\times1}\)\(\textcolor{blue}{(见补充说明2)}\),其中\(\mathbf\Phi\)与方程(6)相同,但\(\mathbf{Y}\)\(\mathbf{X}\)

\[\begin{aligned}&\mathbf{Y}=\left[\langle\mathrm{S}_i(\hat{t}_1+1)\rangle,\langle\mathrm{S}_i(\hat{t}_2+1)\rangle,\cdots,\langle\mathrm{S}_i(\hat{t}_m+1)\rangle\right]^\mathrm{T},\\&\mathbf{X}=\left[\frac{\lambda_i}{k_i}a_{i1},\cdots,\frac{\lambda_i}{k_i}a_{i,i-1},\frac{\lambda_i}{k_i}a_{i,i+1},\cdots,\frac{\lambda_i}{k_i}a_{iN}\right]^\mathrm{T}.\end{aligned}\tag{9} \]

下面给出一个具体CP动力学实例流程图:

posted @ 2024-06-11 20:27  hudad  阅读(17)  评论(0编辑  收藏  举报