核磁共振成像学习笔记——从FID信号到K空间
在理想磁场环境下(没有不存在场不均匀性),对于一个没有梯度场的方块。
此时,RF pulse的两路正交信号(相位差为90°)对此方块进行激发,然后收取信号,我们可以得到由此方块产生的FID信号。
设此信号为\(S(t)\),则此信号由\(S_c(t)\)与\(S_s(t)\)组成,分别组成\(S(t)\)的实部与虚部。
这是我们的接受线圈接收到的两组正交信号。
再利用欧拉公式
使
则
此时,我们忽略衰减项\(e^{-t/T_2}\),则
这是我们对单个方块进行激发的结果,那么此时,引入梯度磁场进行空间定位。
根据拉莫尔进动(Larmor precession)
Phase encoding gradient和frequency encoding gradient的出现会使得这个方块内部的每个位置的进动频率\(\omega\)发生变化。但需要注意Phase encoding gradient和frequency encoding gradient是不能够同时开启的(SE序列中)。然后,我们看自旋回波序列(SE)。
在接收信号前,分别开启了一段Phase encoding gradient和frequency encoding gradient。在接收信号的时候,frequency encoding gradient全程保持开启。
先进行公式推导,\(S(t)\)即为上文理想方块条件下推导得出的,我们将\(M_{xy}\)设定为\(\rho(x,y)\)表示方块中每个位置在加权设定后的信号强度,则
其中
设定\(G_x\)为frequency encoding gradient,\(G_y\)为Phase encoding gradient,和序列图中保持一致,\(0\)至\(t\)为开始采样至实时采样的时间,SE序列图中的\(t_1\)和\(t_2\)为其中的两个\(t\)(这是一个变上限积分)。
令
则
即
至此,在数学上说明了\(S(t)\)与\(\rho(x,y)\)互为傅里叶变换对。这时,我们将方块分割为一个3*3的方块进行进一步的说明。
其中的数值为该位置对应的\(\rho(x,y)\)数值。
以\(S_c(t)\)信号为例,其组成的是\(S(t)\)中的实部,在没有进行空间编码前
根据SE序列的波形,先是进行了Phase encoding gradient
Phase encoding gradient改变的也是\(\omega\),但作用了一段时间就停止了,相当于把纵向的各个单位以不同的\(\omega\)推了相同的时间,那么他们的相位\(\theta\)就发生了变化。并且,通过改变Phase encoding gradient的斜率,可以使得\(\theta\)的数值发生变化,对于一个3*3的方块,想要进行空间定位就要改变三次Phase encoding gradient斜率。
然后在收取数据的同时,进行frequency encoding gradient
frequency encoding gradient同样改变了\(\omega\),并且与收取信号同时进行,就此完成了区块的空间定位。通俗的来说,假设这些区块在一个环形的跑道进行赛跑,Phase encoding gradient就相当于在跑步开始之前,将同一个跑道上的每个跑者推到不同的起点上,frequency encoding gradient相当于使得不同跑道上的跑者有不同的跑步速度。
让我们回到公式
这里面的\(k_x\)与\(k_y\)就是位于K空间的\(xy\)坐标(注意\(t\)与\(t^{\prime}\)的区别)。\(G_y(t)\)就是Phase encoding gradient,在SE序列中每次都需要重新变化斜率,需要在y方向将区域分割成多少块,就需要变化多少次斜率,每次变化都需要经过一个\(TR\)。而\(G_x\)则保持不变,并且只需要增加采样点数就可以增加此方向的区块分割,不需要增加采样的时间。故我们使用SE序列进行图像重建的时候,最好将分块更多的方向对应frequency encoding gradient,因为每次Phase encoding gradient都需要消耗一个\(TR\)。这里我截取MRI,The Basics书中的一幅图说明这一点。
对于一个\(3*3\)的方块,哪边放在frequency encoding gradient都无所谓。但如果是一个\(128*256\)的方块,那么就需要将256的那条边放在frequency encoding gradient上,以减少重建时间。
参考:
[1]MRI From Picture to Proton
[2]MRI, The Basics
[3]MRI磁振影像學 盧家鋒
[4]MRI原理-信号 - lemon lelieven的文章 - 知乎 https://zhuanlan.zhihu.com/p/137255997
[5]【磁共振的K空间】 https://www.bilibili.com/video/BV1ch411e7Yc/?share_source=copy_web&vd_source=0e8c3fe50c67df43ceeb30f63e36eb0d