hadoop debug script
A Hadoop job may consist of many map tasks and reduce tasks. Therefore, debugging a
Hadoop job is often a complicated process. It is a good practice to first test a Hadoop job
using unit tests by running it with a subset of the data.
However, sometimes it is necessary to debug a Hadoop job in a distributed mode. To support
such cases, Hadoop provides a mechanism called debug scripts. This recipe explains how to
use debug scripts.
A debug script is a shell script, and Hadoop executes the script whenever a task encounters
an error. The script will have access to the $script, $stdout, $stderr, $syslog, and
$jobconfproperties, as environment variables populated by Hadoop. You can find a
sample script from resources/chapter3/debugscript. We can use the debug scripts
to copy all the logfiles to a single location, e-mail them to a single e-mail account, or perform
some analysis.
LOG_FILE=HADOOP_HOME/error.log
echo "Run the script" >> $LOG_FILE
echo $script >> $LOG_FILE
echo $stdout>> $LOG_FILE
echo $stderr>> $LOG_FILE
echo $syslog >> $LOG_FILE
echo $jobconf>> $LOG_FILE
when you execute this, you should pay attention to the execute path, or else it will not found debug script.
package chapter3; import java.net.URI; import org.apache.hadoop.filecache.DistributedCache; import org.apache.hadoop.fs.FileStatus; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordcountWithDebugScript { private static final String scriptFileLocation = "resources/chapter3/debugscript"; private static final String HDFS_ROOT = "/debug"; public static void setupFailedTaskScript(JobConf conf) throws Exception { // create a directory on HDFS where we'll upload the fail scripts FileSystem fs = FileSystem.get(conf); // Path debugDir = new Path("/debug"); Path debugDir = new Path(HDFS_ROOT); // who knows what's already in this directory; let's just clear it. if (fs.exists(debugDir)) { fs.delete(debugDir, true); } // ...and then make sure it exists again fs.mkdirs(debugDir); // upload the local scripts into HDFS fs.copyFromLocalFile(new Path(scriptFileLocation), new Path(HDFS_ROOT + "/fail-script")); FileStatus[] list = fs.listStatus(new Path(HDFS_ROOT)); if (list == null || list.length == 0) { System.out.println("No File found"); } else { for (FileStatus f : list) { System.out.println("File found " + f.getPath()); } } conf.setMapDebugScript("./fail-script"); conf.setReduceDebugScript("./fail-script"); // this create a simlink from the job directory to cache directory of // the mapper node DistributedCache.createSymlink(conf); URI fsUri = fs.getUri(); String mapUriStr = fsUri.toString() + HDFS_ROOT + "/fail-script#fail-script"; System.out.println("added " + mapUriStr + "to distributed cache 1"); URI mapUri = new URI(mapUriStr); // Following copy the map uri to the cache directory of the job node DistributedCache.addCacheFile(mapUri, conf); } public static void main(String[] args) throws Exception { JobConf conf = new JobConf(); setupFailedTaskScript(conf); Job job = new Job(conf, "word count"); job.setJarByClass(FaultyWordCount.class); job.setMapperClass(FaultyWordCount.TokenizerMapper.class); job.setReducerClass(FaultyWordCount.IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileSystem.get(conf).delete(new Path(args[1]), true); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true); } }
digest from mapreduce cookbook