Hadoop with tool interface
Often Hadoop jobsare executed through a command line. Therefore, each Hadoop job has to
support reading, parsing, and processing command-line arguments. To avoid each developer
having to rewrite this code, Hadoop provides a org.apache.hadoop.util.Toolinterface.
Sample code :
public class WordcountWithTools extends Configured implements Tool { public int run(String[] args) throws Exception { if (args.length < 2) { System.out .println("chapter3.WordCountWithTools WordCount <inDir> <outDir>"); ToolRunner.printGenericCommandUsage(System.out); System.out.println(""); return -1; } System.out.println(Arrays.toString(args)); // just for test System.out.println(getConf().get("test")); Job job = new Job(getConf(), "word count"); job.setJarByClass(WordCount.class); job.setMapperClass(TokenizerMapper.class); // Uncomment this to // job.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); // delete target if exists FileSystem.get(getConf()).delete(new Path(args[1]), true); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true); return 0; } public static void main(String[] args) throws Exception { int res = ToolRunner.run(new Configuration(), new WordcountWithTools(), args); System.exit(res); } }
Generic options supported are
-conf<configuration file> specify an application configuration
file
-D <property=value> use value for given property
-fs<local|namenode:port> specify a namenode
-jt<local|jobtracker:port> specify a job tracker
-files<comma separated list of files> specify comma separated
files to be copied to the map reduce cluster
-libjars<comma separated list of jars> specify comma separated
jar files to include in the classpath.
-archives<comma separated list of archives> specify comma
separated archives to be unarchived on the compute machines.
The general command line syntax is
bin/hadoop command [genericOptions] [commandOptions]
这里一定要注意顺序,我曾经用错过顺序,把-input -output放在前面,后面使用-D,-libjars不起作用。
使用示例:
JAR_NAME=/home/hadoop/workspace/myhadoop/target/myhadoop-0.0.1-SNAPSHOT.jar
MAIN_CLASS=chapter3.WordcountWithTools
INPUT_DIR=/data/input/
OUTPUT_DIR=/data/output/
hadoop jar $JAR_NAME $MAIN_CLASS -Dtest=lovejava $INPUT_DIR $OUTPUT_DIR
在代码中测试传递的test属性的值。
JAR_NAME=/home/hadoop/workspace/myhadoop/target/myhadoop-0.0.1-SNAPSHOT.jar
MAIN_CLASS=chapter3.WordcountWithTools
INPUT_DIR=/home/hadoop/data/test1.txt
OUTPUT_DIR=/home/hadoop/data/output/
hadoop jar $JAR_NAME $MAIN_CLASS -Dtest=lovejava -fs=file:/// -files=home/hadoop/data/test2.txt
$INPUT_DIR $OUTPUT_DIR
测试处理本地文件系统的文件。
JAR_NAME=/home/hadoop/workspace/myhadoop/target/myhadoop-0.0.1-SNAPSHOT.jar
MAIN_CLASS=chapter3.WordcountWithTools
INPUT_DIR=/home/hadoop/data/test1.txt
OUTPUT_DIR=/home/hadoop/data/output/
hadoop jar $JAR_NAME $MAIN_CLASS -conf=/home/hadoop/data/democonf.xml -fs=file:/// $INPUT_DIR $OUTPUT_DIR
指定配置文件。
-libjars可以把你写的mapreduce中引用的第三方包放到HDFS上,然后各结点在运行作业的时候复制到本地临时目录,以避免找不到引用类的情况。