CartoonGAN论文复现:如何将图像动漫化
摘要:本案例是 CartoonGAN: Generative Adversarial Networks for Photo Cartoonization的论文复现案例。
本文分享自华为云社区《cartoongan 图像动漫化》,作者: HWCloudAI 。
本案例是 CartoonGAN: Generative Adversarial Networks for Photo Cartoonization的论文复习案例。在拷贝数据之后,将你想动漫化的图像放到cartoongan-pytorch/test_img/文件夹下,运行后面代码即可。
可以切换不同生成风格,Hosoda/Shinkai/Paprika/Hayao
参考:https://github.com/venture-anime/cartoongan-pytorch
拷贝代码和数据
import moxing as mox mox.file.copy_parallel('obs://obs-aigallery-zc/clf/code/cartoongan-pytorch','cartoongan-pytorch')
%cd cartoongan-pytorch
运行代码
import torch import os import numpy as np import torchvision.utils as vutils from PIL import Image import torchvision.transforms as transforms from torch.autograd import Variable import matplotlib.pyplot as plt from network.Transformer import Transformer import argparse parser = argparse.ArgumentParser() parser.add_argument("--input_dir", default="test_img") parser.add_argument("--load_size", default=1280) parser.add_argument("--model_path", default="./pretrained_model") parser.add_argument("--style", default="Hosoda") # 在这里切换风格, Hosoda/Shinkai/Paprika/Hayao parser.add_argument("--output_dir", default="test_output") parser.add_argument("--gpu", type=int, default=0) # opt = parser.parse_args() opt, unknown = parser.parse_known_args() valid_ext = [".jpg", ".png", ".jpeg"] # setup if not os.path.exists(opt.input_dir): os.makedirs(opt.input_dir) if not os.path.exists(opt.output_dir): os.makedirs(opt.output_dir) # load pretrained model model = Transformer() model.load_state_dict( torch.load(os.path.join(opt.model_path, opt.style + "_net_G_float.pth")) ) model.eval() disable_gpu = opt.gpu == -1 or not torch.cuda.is_available() if disable_gpu: print("CPU mode") model.float() else: print("GPU mode") model.cuda() for i,files in enumerate(os.listdir(opt.input_dir)): ext = os.path.splitext(files)[1] if ext not in valid_ext: continue # load image input_image = Image.open(os.path.join(opt.input_dir, files)).convert("RGB") input_image = np.asarray(input_image) # RGB -> BGR input_image = input_image[:, :, [2, 1, 0]] input_image = transforms.ToTensor()(input_image).unsqueeze(0) # preprocess, (-1, 1) input_image = -1 + 2 * input_image if disable_gpu: input_image = Variable(input_image).float() else: input_image = Variable(input_image).cuda() # forward output_image = model(input_image) output_image = output_image[0] # BGR -> RGB output_image = output_image[[2, 1, 0], :, :] output_image = output_image.data.cpu().float() * 0.5 + 0.5 # save vutils.save_image( output_image, os.path.join(opt.output_dir, files[:-4] + "_" + opt.style + ".jpg"), ) original = np.array(Image.open(os.path.join(opt.input_dir, files))) style = np.array(Image.open(os.path.join(opt.output_dir, files[:-4] + "_" + opt.style + ".jpg"))) plt.figure(figsize=(20,20)) # 显示缩放比例 plt.subplot(i+1,2,1) plt.imshow(original) plt.subplot(i+1,2,2) plt.imshow(style) plt.show() print("Done!")
![](https://pic2.zhimg.com/80/v2-85286e018edcad376bddb140a1a4f859_720w.webp)
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步