国庆出游神器:魔幻黑科技换天造物,让vlog秒变科幻大片!
摘要:国庆旅游景点人太多,拍出来的照片全是人人人、车车车,该怎么办?不妨试试这个黑科技,让你的出游vlog秒变科幻大片。
本文分享自华为云社区《国庆出游神器,魔幻黑科技换天造物,让vlog秒变科幻大片!》,作者:技术火炬手 。
国庆出游,无论是拍人、拍景或是其他,“天空”都是关键元素。比如,一张平平无奇的景物图加上落日余晖的天空色调,氛围感就有了。
当然,自然景观的天空还不是最酷炫的。今天给大家介绍一款基于原生视频的AI处理方法,不仅可以一键置换天空背景,还可以打造任意“天空之城”。
比如换成《星际迷航》中的浩瀚星空、宇宙飞船,将自己随手拍的平平无奇vlog秒变为科幻大片,画面毫无违和感。
该方法源自Github上的开源项目SkyAR,它可以自动识别天空,然后将天空从图片中切割出来,再将天空替换成目标天空,从而实现魔法换天。
下面,我们将基于SkyAR和ModelArts的JupyterLab从零开始“换天造物”。只要脑洞够大,利用这项AI技术,就可以创造出无限种玩法。
本案例在CPU和GPU下面均可运行,CPU环境运行预计花费9分钟,GPU环境运行预计花费2分钟。
实验目标
通过本案例的学习:
了解图像分割的基本应用;
了解运动估计的基本应用;
了解图像混合的基本应用。
注意事项
- 如果您是第一次使用 JupyterLab,请查看《ModelArts JupyterLab使用指导》了解使用方法;
- 如果您在使用 JupyterLab 过程中碰到报错,请参考《ModelArts JupyterLab常见问题解决办法》尝试解决问题。
实验步骤
1、安装和导入依赖包
import os import moxing as mox file_name = 'SkyAR' if not os.path.exists(file_name): mox.file.copy('obs://modelarts-labs-bj4-v2/case_zoo/SkyAR/SkyAR.zip', 'SkyAR.zip') os.system('unzip SkyAR.zip') os.system('rm SkyAR.zip') mox.file.copy_parallel('obs://modelarts-labs-bj4-v2/case_zoo/SkyAR/resnet50-19c8e357.pth', '/home/ma-user/.cache/torch/checkpoints/resnet50-19c8e357.pth') INFO:root:Using MoXing-v1.17.3-43fbf97f INFO:root:Using OBS-Python-SDK-3.20.7 !pip uninstall opencv-python -y !pip uninstall opencv-contrib-python -y Found existing installation: opencv-python 4.1.2.30 Uninstalling opencv-python-4.1.2.30: Successfully uninstalled opencv-python-4.1.2.30 WARNING: Skipping opencv-contrib-python as it is not installed. !pip install opencv-contrib-python==4.5.3.56 Looking in indexes: http://repo.myhuaweicloud.com/repository/pypi/simple Collecting opencv-contrib-python==4.5.3.56 Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/3f/ce/36772cc6d9061b423b080e86919fd62cdef0837263f29ba6ff92e07f72d7/opencv_contrib_python-4.5.3.56-cp37-cp37m-manylinux2014_x86_64.whl (56.1 MB) |████████████████████████████████| 56.1 MB 166 kB/s eta 0:00:01|█████▋ | 9.8 MB 9.4 MB/s eta 0:00:05 MB 9.4 MB/s eta 0:00:05███▏ | 26.6 MB 9.4 MB/s eta 0:00:04/s eta 0:00:03��██▍ | 35.8 MB 9.4 MB/s eta 0:00:03�███████████▌ | 42.9 MB 9.4 MB/s eta 0:00:02��██████████████▎ | 49.6 MB 166 kB/s eta 0:00:40 Requirement already satisfied: numpy>=1.14.5 in /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages (from opencv-contrib-python==4.5.3.56) (1.20.3) Installing collected packages: opencv-contrib-python Successfully installed opencv-contrib-python-4.5.3.56 WARNING: You are using pip version 20.3.3; however, version 21.1.3 is available. You should consider upgrading via the '/home/ma-user/anaconda3/envs/PyTorch-1.4/bin/python -m pip install --upgrade pip' command. cd SkyAR/ /home/ma-user/work/Untitled Folder/SkyAR import time import json import base64 import numpy as np import matplotlib.pyplot as plt import cv2 import argparse from networks import * from skyboxengine import * import utils import torch from IPython.display import clear_output, Image, display, HTML %matplotlib inline # 如果存在GPU则在GPU上面运行 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") INFO:matplotlib.font_manager:generated new fontManager
2、预览一下原视频
video_name = "test_videos/sky.mp4" def arrayShow(img): img = cv2.resize(img, (0, 0), fx=0.25, fy=0.25, interpolation=cv2.INTER_NEAREST) _,ret = cv2.imencode('.jpg', img) return Image(data=ret) # 打开一个视频流 cap = cv2.VideoCapture(video_name) frame_id = 0 while True: try: clear_output(wait=True) # 清除之前的显示 ret, frame = cap.read() # 读取一帧图片 if ret: frame_id += 1 if frame_id > 200: break cv2.putText(frame, str(frame_id), (5, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1) # 画frame_id tmp = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # 转换色彩模式 img = arrayShow(frame) display(img) # 显示图片 time.sleep(0.05) # 线程睡眠一段时间再处理下一帧图片 else: break except KeyboardInterrupt: cap.release() cap.release()
3、预览一下要替换的天空图片
img= cv2.imread('skybox/sky.jpg') img2 = img[:,:,::-1] plt.imshow(img2) <matplotlib.image.AxesImage at 0x7fbea986c590>
4、自定义训练参数
可以根据自己的需要, 修改下面的参数
skybox_center_crop: 天空体中心偏移
auto_light_matching: 自动亮度匹配
relighting_factor: 补光
recoloring_factor: 重新着色
halo_effect: 光环效应
parameter = { "net_G": "coord_resnet50", "ckptdir": "./checkpoints_G_coord_resnet50", "input_mode": "video", "datadir": "./test_videos/sky.mp4", "skybox": "sky.jpg", "in_size_w": 384, "in_size_h": 384, "out_size_w": 845, "out_size_h": 480, "skybox_center_crop": 0.5, "auto_light_matching": False, "relighting_factor": 0.8, "recoloring_factor": 0.5, "halo_effect": True, "output_dir": "./jpg_output", "save_jpgs": False } str_json = json.dumps(parameter) class Struct: def __init__(self, **entries): self.__dict__.update(entries) def parse_config(): data = json.loads(str_json) args = Struct(**data) return args args = parse_config() class SkyFilter(): def __init__(self, args): self.ckptdir = args.ckptdir self.datadir = args.datadir self.input_mode = args.input_mode self.in_size_w, self.in_size_h = args.in_size_w, args.in_size_h self.out_size_w, self.out_size_h = args.out_size_w, args.out_size_h self.skyboxengine = SkyBox(args) self.net_G = define_G(input_nc=3, output_nc=1, ngf=64, netG=args.net_G).to(device) self.load_model() self.video_writer = cv2.VideoWriter('out.avi', cv2.VideoWriter_fourcc(*'MJPG'), 20.0, (args.out_size_w, args.out_size_h)) self.video_writer_cat = cv2.VideoWriter('compare.avi', cv2.VideoWriter_fourcc(*'MJPG'), 20.0, (2*args.out_size_w, args.out_size_h)) if os.path.exists(args.output_dir) is False: os.mkdir(args.output_dir) self.output_img_list = [] self.save_jpgs = args.save_jpgs def load_model(self): # 加载预训练的天空抠图模型 print('loading the best checkpoint...') checkpoint = torch.load(os.path.join(self.ckptdir, 'best_ckpt.pt'), map_location=device) self.net_G.load_state_dict(checkpoint['model_G_state_dict']) self.net_G.to(device) self.net_G.eval() def write_video(self, img_HD, syneth): frame = np.array(255.0 * syneth[:, :, ::-1], dtype=np.uint8) self.video_writer.write(frame) frame_cat = np.concatenate([img_HD, syneth], axis=1) frame_cat = np.array(255.0 * frame_cat[:, :, ::-1], dtype=np.uint8) self.video_writer_cat.write(frame_cat) # 定义结果缓冲区 self.output_img_list.append(frame_cat) def synthesize(self, img_HD, img_HD_prev): h, w, c = img_HD.shape img = cv2.resize(img_HD, (self.in_size_w, self.in_size_h)) img = np.array(img, dtype=np.float32) img = torch.tensor(img).permute([2, 0, 1]).unsqueeze(0) with torch.no_grad(): G_pred = self.net_G(img.to(device)) G_pred = torch.nn.functional.interpolate(G_pred, (h, w), mode='bicubic', align_corners=False) G_pred = G_pred[0, :].permute([1, 2, 0]) G_pred = torch.cat([G_pred, G_pred, G_pred], dim=-1) G_pred = np.array(G_pred.detach().cpu()) G_pred = np.clip(G_pred, a_max=1.0, a_min=0.0) skymask = self.skyboxengine.skymask_refinement(G_pred, img_HD) syneth = self.skyboxengine.skyblend(img_HD, img_HD_prev, skymask) return syneth, G_pred, skymask def cvtcolor_and_resize(self, img_HD): img_HD = cv2.cvtColor(img_HD, cv2.COLOR_BGR2RGB) img_HD = np.array(img_HD / 255., dtype=np.float32) img_HD = cv2.resize(img_HD, (self.out_size_w, self.out_size_h)) return img_HD def process_video(self): # 逐帧处理视频 cap = cv2.VideoCapture(self.datadir) m_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) img_HD_prev = None for idx in range(m_frames): ret, frame = cap.read() if ret: img_HD = self.cvtcolor_and_resize(frame) if img_HD_prev is None: img_HD_prev = img_HD syneth, G_pred, skymask = self.synthesize(img_HD, img_HD_prev) self.write_video(img_HD, syneth) img_HD_prev = img_HD if (idx + 1) % 50 == 0: print(f'processing video, frame {idx + 1} / {m_frames} ... ') else: # 如果到达最后一帧 break
5、替换天空
替换后输出的视频为out.avi,前后对比的视频为compare.avi
sf = SkyFilter(args) sf.process_video() initialize skybox... initialize network with normal loading the best checkpoint... processing video, frame 50 / 360 ... processing video, frame 100 / 360 ... no good point matched processing video, frame 150 / 360 ... processing video, frame 200 / 360 ... processing video, frame 250 / 360 ... processing video, frame 300 / 360 ... processing video, frame 350 / 360 ...
6、对比原视频和替换后的视频
video_name = "compare.avi" def arrayShow(img): _,ret = cv2.imencode('.jpg', img) return Image(data=ret) # 打开一个视频流 cap = cv2.VideoCapture(video_name) frame_id = 0 while True: try: clear_output(wait=True) # 清除之前的显示 ret, frame = cap.read() # 读取一帧图片 if ret: frame_id += 1 cv2.putText(frame, str(frame_id), (5, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1) # 画frame_id tmp = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # 转换色彩模式 img = arrayShow(frame) display(img) # 显示图片 time.sleep(0.05) # 线程睡眠一段时间再处理下一帧图片 else: break except KeyboardInterrupt: cap.release() cap.release()
如果要生成自己的视频,只要将test_videos中的sky.mp4视频和skybox中的sky.jpg图片替换成自己的视频和图片,然后重新一键运行就可以了。赶快来试一试吧,让你的国庆大片更出彩!
华为云社区祝大家国庆节快乐,度过一个开心的假期!
附录
本案例源自华为云AI Gallery:魔幻黑科技,可换天造物,秒变科幻大片!