教你几招HASH表查找的方法

摘要:根据设定的哈希函数 H(key) 和所选中的处理冲突的方法,将一组关键字映象到一个有限的、地址连续的地址集 (区间) 上,并以关键字在地址集中的“象”作为相应记录在表中的存储位置,如此构造所得的查找表称之为“哈希表”。

本文分享自华为云社区《查找——HASH》,原文作者:ruochen。

对于频繁使用的查找表,希望 ASL = 0
记录在表中位置和其关键字之间存在一种确定的关系

HASH

定义

根据设定的哈希函数 H(key) 和所选中的处理冲突的方法,将一组关键字映象到一个有限的、地址连续的地址集 (区间) 上,并以关键字在地址集中的“象”作为相应记录在表中的存储位置,如此构造所得的查找表称之为“哈希表”

HASH函数的构造

  • 构造原则
    • 函数本身便于计算
    • 计算出来的地址分布均匀,即对任一关键字k,f(k) 对应不同地址的概率相等,目的是尽可能减少冲突

直接定址法

  • 哈希函数为关键字的线性函数
    • H(key) = key
    • H(key) = a * key + b

 

  • 此法仅适合于:
    地址集合的大小 = = 关键字集合的大小
  • 优点:以关键码key的某个线性函数值为哈希地址,不会产生冲突
  • 缺点:要占用连续地址空间,空间效率低

数字分析法

  • 假设关键字集合中的每个关键字都是由 s 位数字组成 (u1, u2, …, us),分析关键字集中的全体, 并从中提取分布均匀的若干位或它们的组合作为地址
  • 此方法仅适合于:
    能预先估计出全体关键字的每一位上各种数字出现的频度

平方取中法

  • 以关键字的平方值的中间几位作为存储地址。求“关键字的平方值” 的目的是“扩大差别” ,同时平方值的中间各位又能受到整个关键字中各位的影响
  • 此方法适合于:
    关键字中的每一位都有某些数字重复出现频度很高的现象

折叠法

  • 将关键字分割成若干部分,然后取它们的叠加和为哈希地址。有两种叠加处理的方法:移位叠加和间界叠加
  • 此方法适合于:
    关键字的数字位数特别多

除留余数法

  • Hash(key)=key mod p (p是一个整数)
    • p≤m (表长)
    • p 应为小于等于 m 的最大素数

为什么要对 p 加限制?

给定一组关键字为: 12, 39, 18, 24, 33, 21若取 p=9, 则他们对应的哈希函数值将为:
3, 3, 0, 6, 6, 3

可见,若 p 中含质因子 3, 则所有含质因子 3 的关键字均映射到“3 的倍数”的地址上,从而增加了“冲突”的可能

随机数法

  • H(key) = Random(key) (Random 为伪随机函数)
  • 此方法用于对长度不等的关键字构造哈希函数

考虑因素

  1. 执行速度(即计算哈希函数所需时间)
  2. 关键字的长度
  3. 哈希表的大小
  4. 关键字的分布情况
  5. 查找频率

采用何种构造哈希函数的方法取决于建表的关键字集合的情况
原则是使产生冲突的可能性降到尽可能地小

处理冲突的方法

1. 开放定址法

基本思想

  • 有冲突时就去寻找下一个空的哈希地址,只要哈希表足够大,空的哈希地址总能找到,并将数据元素存入

线性探测法

  • Hi=(Hash(key)+di) mod m ( 1≤i < m )
    其中:m为哈希表长度
    di 为增量序列 1,2,…m-1,且di=i

一旦冲突,就找下一个空地址存入

  • 优点:只要哈希表未被填满,保证能找到一个空地址单元存放有冲突的元素
  • 缺点:能使第i个哈希地址的同义词存入第i+1个地址,这样本应存入第i+1个哈希地址的元素变成了第i+2个哈希地址的同义词,……,产生“聚集”现象,降低查找效率

二次探测法

di = 12, -12, 22, -22, …±k2

伪随机探测法

Hi=(Hash(key)+di) mod m ( 1≤i < m )
其中:m为哈希表长度
di 为随机数

开放定址法建立哈希表步骤

  • 取数据元素的关键字key,计算其哈希函数值(地址)。若该地址对应的存储 空间还没有被占用,则将该元素存入;否则执行step2解决冲突
  • 根据选择的冲突处理方法,计算关键字key的下一个存储地址。若下一个存储地址仍被占用,则继续执行step2,直到找 到能用的存储地址为止

开放定址哈希表的存储结构

/* ------------- 开放定址哈希表的存储结构 ------------- */

int hashsize[] = {997, ...};
typedef struct{
    ElemType* elem;
    int count;  // 当前数据元素个数
    int sizeindex;  // hashsize[sizeindex]为当前容量
} HashTable;

#define SUCCESS 1
#define UNSUCCESS 0
#define DUPLICATE -1

Status SearchHash(HashTable H, KeyType K, int &p, int &c){
    // 在开放定址哈希表H中查找关键码为K的记录
    p = Hash(K);  // 求得哈希地址
    while(H.elem[p].key != NULLKEY && !EQ(K, H.elem[p].key))
        collisiion(p, ++c);  // 求得下一探测地址p
    if(EQ(K, H.elem[p].key)) return SUCCESS;  // 查找成功,返回待查数据元素位置 p
    else return UNSUCCESS;  // 查找不成功
}

2. 再HASH法

  • H2(key) 是另设定的一个哈希函数,它的函数值应和 m 互质

3. 链地址法

基本思想

  • 相同哈希地址的记录链成一单链表,m个哈希地址就设m个单链表,然后用用一个数组将m个单链表的表头指针存储起来,形成一个动态的结构

优点:

  • 非同义词不会冲突,无“聚集”现象
  • 链表上结点空间动态申请,更适合于表长不确定的情况

哈希表的查找

对于给定值 K,计算哈希地址 i = H(K)

  • 若 r[i] = NULL 则查找不成功
  • 若 r[i].key = K 则查找成功, 否则 “求下一地址 Hi” ,直至r[Hi] = NULL (查找不成功) 或r[Hi].key = K (查找成功) 为止

案例v01

  • 线性探测法解决冲突

案例v02

  • 链地址法处理冲突

哈希表查找的分析

从查找过程得知,哈希表查找的平均查找长度实际上并不等于零

决定哈希表查找的ASL的因素

  • 选用的哈希函数
  • 选用的处理冲突的方法
  • 哈希表饱和的程度,装载因子 α=n/m 值的大小(n—记录数,m—表的长度)

α 越大,表中记录数越多,说明表装得越满,发生冲突的可能性就越大,查找时比较次数就越多

  1. 对哈希表技术具有很好的平均性能,优于一些传统的技术
  2. 链地址法优于开地址法
  3. 除留余数法作哈希函数优于其它类型函数

哈希表应用举例

编译器对标识符的管理多是采用哈希表

  • 构造哈希函数的方法
    • 将标识符中的每个字符转换为一个非负整数
    • 将得到的各个整数组合成一个整数(可以将第一个、中间的和最后一个字符值加在一起,也可以将所有字符的值加起来)
    • 将结果数调整到0~M-1范围内,可以利用取模的方法,Ki%M(M为素数)

 

点击关注,第一时间了解华为云新鲜技术~

posted @ 2021-07-07 10:51  华为云开发者联盟  阅读(738)  评论(0编辑  收藏  举报