技术解读丨分布式缓存数据库Redis大KEY问题定位及优化建议

摘要:如何定位分布式缓存数据库Redis大KEY问题,实操案例带你掌握优化方法。

【背景】

访问Redis 5.0 cluster集群出现OOM报错,报错信息为(error) OOM command not allowed when used memory > ‘maxmemory’,部分ECS应用程序无法向数据库写入,影响服务的正常使用。执行set t2 s2时,数据库报错OOM,如下图:

【拓扑】

环境信息:

Redis 5.0 cluster集群 4G内存

DCS网段:192.168.1.0/24

分片1:master 192.168.1.12 slave 192.168.1.37

分片2:master 192.168.1.10 slave 192.168.1.69

分片3:master 192.168.1.26 slave 192.168.1.134

【分析思路】

【详细步骤】

一、查看监控

查看Redis实例监控,显示Redis集群内存占用46.97%,无明显异常,结果如下图所示:

查看节点的内存监控。其中分片2中master节点192.168.1.10内存使用率达到100%,其余两个分片分内存使用率均在20%左右,结果如下图所示:

二、确认异常分片信息

通过上述监控信息可得知,该redis集群中的分片2中内存使用率达100%。有且仅有该分片内存异常。

三、大KEY分析

在线分析

① 工具分析:使用华为云管理控制台缓存分析-大Key分析工具。执行完成后,查看信息即可。结果如下图所示:(string类型保存top20,list/set/zset/hash类型保存top80)

具体使用方法参考以下链接:

② 命令分析:使用redis-cli -h IP -p port –bigkeys命令,该工具会列出各个类型数据中大Key中的最大的那个key的信息。结果如下图所示:

如上图所示,可以得出该环境中string类型的大key为“nc_filed/_pk”,大小为13283byte,list、set、hash、zset类型的数据未发现大key。

离线方式

离线分析需要使用专门的rdb_bigkeys分析工具,对rdb文件进行分析。工具地址: https://github.com/weiyanwei412/rdb_bigkeys。具体步骤如下:

编译方法:

# yum install git go -y

# mkdir /home/gocode/

# cd /home/gocode/

# git clone 

# cd rdb_bigkeys

# go build

执行完成生成可执行文件rdb_bigkeys。
使用方法:

./rdb_bigkeys -bytes 1024 -file bigkeys.csv -sorted -threads 4 /home/redis/dump.rdb

参数说明:

-bytes 1024:筛选大于1024字节的key

-file bigkeys.csv:将结果保存到bigkeys.csv文件

-sorted:从大到小进行排序

-threads:使用的线程个数

/home/redis/dump.rdb:实际的rdb文件路径

生成文件样式如下所示:

每列分别为数据库编号,key类型,key名,key大小,元素数量,最大值元素名,元素大小,key过期时间。文档链接:https://www.cnblogs.com/yqzc/p/12425533.html

四、解决方案

导致本次OOM问题的根因为大KEY导致数据大小分布不均匀,某一个分片内存达到maxmemory,在进行数据写入的过程中,如果调度到该分片,则会产生OOM问题。将该分片的rdb文件导出一份,以便于后期针对大key做对应的优化。

临时方案:

为尽快回复业务,删除上有步骤中查询到的大KEY,执行操作如下:(非字符串的bigkey,不要使用 del 删除,使用 hscan、sscan、zscan 方式渐进式删除)

长期方案:

通过对大KEY进行拆分,将一个大的KEY拆分为多个小的KEY, 变成value1,value2… valueN,打散分不到不同的分片中,避免因为数据倾斜导致的数据分布不均。

其他的类型的数据也可以按照相同的方式进行拆分重组,从而避免大KEY带来的影响。

五、 结果验证

查看分片监控,192.168.1.10内存使用率下降到24%,结果如下图所示:

执行set t2 s2,返回正常,登录集群,执行get命令,正常返回数据信息。结果如下所示,至此业务恢复正常。

【优化及建议】

1) 配置节点级别的内存利用率监控指标的告警。如果某个节点存在大key,这个节点比其他节点内存使用率高很多,会触发告警,便于用户发现潜在的大key。

2) 配置节点级别的入网最大带宽、出网最大带宽、CPU利用率监控指标的告警。如果某个节点存在热key,这个节点的带宽占用、CPU利用率都比其他节点高,该节点会容易触发告警,便于用户发现潜在热key。

3) string类型控制在10KB以内,hash、list、set、zset元素尽量不超过5000。

4) 定期通过大key、热key分析工具检查集群中是否存在大key问题,尽早识别风险。

 

点击关注,第一时间了解华为云新鲜技术~

摘要:如何定位分布式缓存数据库Redis大KEY问题,实操案例带你掌握优化方法。

 

【背景】

 

访问Redis 5.0 cluster集群出现OOM报错,报错信息为(error) OOM command not allowed when used memory > ‘maxmemory’,部分ECS应用程序无法向数据库写入,影响服务的正常使用。执行set t2 s2时,数据库报错OOM,如下图:

 

 

【拓扑】

 

 

环境信息:

 

Redis 5.0 cluster集群 4G内存

 

DCS网段:192.168.1.0/24

 

分片1:master 192.168.1.12 slave 192.168.1.37

 

分片2:master 192.168.1.10 slave 192.168.1.69

 

分片3:master 192.168.1.26 slave 192.168.1.134

 

【分析思路】

 

 

【详细步骤】

 

一、查看监控

 

查看Redis实例监控,显示Redis集群内存占用46.97%,无明显异常,结果如下图所示:

 

 

查看节点的内存监控。其中分片2中master节点192.168.1.10内存使用率达到100%,其余两个分片分内存使用率均在20%左右,结果如下图所示:

 

 

二、确认异常分片信息

 

通过上述监控信息可得知,该redis集群中的分片2中内存使用率达100%。有且仅有该分片内存异常。

 

三、大KEY分析

 

在线分析

 

① 工具分析:使用华为云管理控制台缓存分析-大Key分析工具。执行完成后,查看信息即可。结果如下图所示:(string类型保存top20,list/set/zset/hash类型保存top80)

 

具体使用方法参考以下链接:https://support.huaweicloud.com/usermanual-dcs/dcs-ug-190808001.html

 

 

② 命令分析:使用redis-cli -h IP -p port –bigkeys命令,该工具会列出各个类型数据中大Key中的最大的那个key的信息。结果如下图所示:

 

 

如上图所示,可以得出该环境中string类型的大key为“nc_filed/_pk”,大小为13283byte,list、set、hash、zset类型的数据未发现大key。

 

离线方式

 

离线分析需要使用专门的rdb_bigkeys分析工具,对rdb文件进行分析。工具地址: https://github.com/weiyanwei412/rdb_bigkeys。具体步骤如下:

 

编译方法:

 

# yum install git go -y

 

# mkdir /home/gocode/

 

# cd /home/gocode/

 

# git clone https://github.com/weiyanwei412/rdb_bigkeys.git

 

# cd rdb_bigkeys

 

# go build

 

执行完成生成可执行文件rdb_bigkeys。

使用方法:

 

./rdb_bigkeys -bytes 1024 -file bigkeys.csv -sorted -threads 4 /home/redis/dump.rdb

 

参数说明:

 

-bytes 1024:筛选大于1024字节的key

 

-file bigkeys.csv:将结果保存到bigkeys.csv文件

 

-sorted:从大到小进行排序

 

-threads:使用的线程个数

 

/home/redis/dump.rdb:实际的rdb文件路径

 

生成文件样式如下所示:

 

 

每列分别为数据库编号,key类型,key名,key大小,元素数量,最大值元素名,元素大小,key过期时间。文档链接:https://www.cnblogs.com/yqzc/p/12425533.html

 

四、解决方案

 

导致本次OOM问题的根因为大KEY导致数据大小分布不均匀,某一个分片内存达到maxmemory,在进行数据写入的过程中,如果调度到该分片,则会产生OOM问题。将该分片的rdb文件导出一份,以便于后期针对大key做对应的优化。

 

临时方案:

 

为尽快回复业务,删除上有步骤中查询到的大KEY,执行操作如下:(非字符串的bigkey,不要使用 del 删除,使用 hscan、sscan、zscan 方式渐进式删除)

 

 

长期方案:

 

通过对大KEY进行拆分,将一个大的KEY拆分为多个小的KEY, 变成value1,value2… valueN,打散分不到不同的分片中,避免因为数据倾斜导致的数据分布不均。

 

 

其他的类型的数据也可以按照相同的方式进行拆分重组,从而避免大KEY带来的影响。

 

五、 结果验证

 

查看分片监控,192.168.1.10内存使用率下降到24%,结果如下图所示:

 

 

执行set t2 s2,返回正常,登录集群,执行get命令,正常返回数据信息。结果如下所示,至此业务恢复正常。

 

 

【优化及建议】

 

1) 配置节点级别的内存利用率监控指标的告警。如果某个节点存在大key,这个节点比其他节点内存使用率高很多,会触发告警,便于用户发现潜在的大key。

 

2) 配置节点级别的入网最大带宽、出网最大带宽、CPU利用率监控指标的告警。如果某个节点存在热key,这个节点的带宽占用、CPU利用率都比其他节点高,该节点会容易触发告警,便于用户发现潜在热key。

 

3) string类型控制在10KB以内,hash、list、set、zset元素尽量不超过5000。

 

4) 定期通过大key、热key分析工具检查集群中是否存在大key问题,尽早识别风险。

 

 

 

点击关注,第一时间了解华为云新鲜技术~

 

posted @ 2020-10-14 21:35  华为云开发者联盟  阅读(1078)  评论(0编辑  收藏  举报