在modelarts上部署backend为TensorFlow的keras模型
最近老山在研究在modelarts上部署mask-rcnn,源代码提供的是keras模型。我们可以将keras转化成savedModel模型,在TensorFlow Serving上部署,可参考老山的上篇部署文章。至于输入和输出张量,到已经预先存在model.input和model.output中了。
不多说,直接上代码。
from keras import backend as K
import tensorflow as tf
# 在此之前,先加载keras模型
# 。。。
# 加载完成
with K.get_session() as sess:
export_path = './saved_model'
builder = tf.saved_model.builder.SavedModelBuilder(export_path)
signature_inputs = {
'input_image': tf.saved_model.utils.build_tensor_info(model.input[0]),
'input_image_meta': tf.saved_model.utils.build_tensor_info(model.input[1]),
'input_anchors': tf.saved_model.utils.build_tensor_info(model.input[2]),
}
signature_outputs = {
'mrcnn_detection':tf.saved_model.utils.build_tensor_info(model.output[0]),
'mrcnn_class':tf.saved_model.utils.build_tensor_info(model.output[1]),
'mrcnn_bbox':tf.saved_model.utils.build_tensor_info(model.output[2]),
'mrcnn_mask':tf.saved_model.utils.build_tensor_info(model.output[3]),
'ROI':tf.saved_model.utils.build_tensor_info(model.output[4]),
'rpn_class':tf.saved_model.utils.build_tensor_info(model.output[5]),
'rpn_bbox':tf.saved_model.utils.build_tensor_info(model.output[6]),
}
classification_signature_def = tf.saved_model.signature_def_utils.build_signature_def(
inputs=signature_inputs,
outputs=signature_outputs,
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME)
builder.add_meta_graph_and_variables(
sess,
[tf.saved_model.tag_constants.SERVING],
signature_def_map={
'root': classification_signature_def
},
)
builder.save()
作者:山找海味
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· SQL Server 2025 AI相关能力初探
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南