Fork me on GitHub

Monte Carlo:

通过极限情况下的分布关系$\pi (x’) =\sum\limits_{x}{ \pi (x)P(x->x’)} $

有p(x’)$\approx\sum\limits_{x}{p(x)T(x—>x’)}$

若T满足regular markov chain的条件,则Monte Carlo方法保证在极限条件下收敛到目标分布。

Regular Markov Chain

转移矩阵经过若干次相乘后,所有项都不为0的马尔科夫链就是规则马尔科夫链。

   充分条件:任意两个状态都相连,每个状态自转移概率不为0.

An square matrix $A$ is called regular if for some integer $n$ all entries of $ A^n $ are positive.

Example

The matrix

\begin{displaymath}A = \left[ \begin{array}{rr}
0&1\\
1&0\\
\end{array}
\right]\end{displaymath}

is not a regular matrix, because for all positive integer $n$,

\begin{displaymath}A^{2n} = \left[ \begin{array}{rr}
1&0\\
0&1\\
\end{arra...
...\left[ \begin{array}{rr}
0&1\\
1&0\\
\end{array}
\right]\end{displaymath}

The matrix $A =\left[ \begin{array}{rrrrr}
.25&.20&.25&.30 \\
.20&.30&.25&.30 \\
.25&.20&.40&.10 \\
.30&.30&.10&.30 \\
\end{array} \right[
$

is a regular matrix, because $A^1 $ has all positive entries.

It can also be shown that all other eigenvalues of A are less than 1, and algebraic multiplicity of 1 is one.

It can be shown that if $A$ is a regular matrix then $ A^n $ approaches to a matrix $ Q $ whose columns are all equal to a probability vector $ q $ which is called the steady-state vector of the regular Markov chain.

\begin{displaymath}\mbox{ if } A \mbox{ regular, then } A^n \rightarrow Q = \lef...
...&&.\\
.&.&&&&.\\
q_k&q_k&.&.&.&q_k\\
\end{array}
\right]\end{displaymath}

where $q_{1} + q_{2} + \dots + q_{k} = 1$.

It can be shown that for any probability vector $x^{(0) }$ when $n$ gets large, $A^n x^{(0)}$ approaches to the steady-state vector

\begin{displaymath}{\bf q } = \left[ \begin{array}{r}
q_1\\
q_2\\
\vdots \\
q_k\\
\end{array}
\right]\end{displaymath}

.

That is

\begin{displaymath}A^n x^{(0)} \longrightarrow q=\left[ \begin{array}{r}
q_1\\
q_2\\
.\\
.\\
.\\
q_k\\
\end{array}
\right]\end{displaymath}

where $q_{1} + q_{2} + \dots + q_{k} = 1$.

It can also be shown that the steady-state vector q is the only vector such that

\begin{displaymath}Aq = q\end{displaymath}

Note that this shows q is an eigenvector of A and $ 1$ is eigenvalue of A.

 

Mixed:收敛的

验证方法,通常不能验证已经mixed,但是能验证还不是mixed:

1、使用windows,截取一个时间段的数据看是否相近。但是可能在收敛过程中有小部分数据先聚集到一起,这不能说明是收敛的。

2、使用两个不同的初始状态的马尔科夫链。在同一个时间观察,如果数据不相近,则不是mixed。

实际中可以使用一个随机初始的,和一个高概率初始的来比较。

 

MCMC方法取得的样本不是IID的,所以有时需要间隔一段再取。

The faster the Markov Chain converges, the less correlated are the samples.

image

image

image

 

Gibbs Sampling

对多维数据有效。

image

不能mix的gibbs sampling chain

image

metropolis-hastings

image

posted on 2013-08-10 20:11  huashiyiqike  阅读(562)  评论(0编辑  收藏  举报